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1. Study of Arithmetic Properties of

Linear Differential Equations

For the period of the Grant we conducted examinations of arithmetic and geometric
properties of linear differential equations, using methods of Pade apprcxlmations. Thcsc
studies were aimed at detection of special arithmetic properties of solutions of these equa-
tions that can be used to study diophantine approximations of classical constants. Recently,
we concentrated our work on examination of arithmetic and geometric properties of linear

differential equations that distinguish the deformation equations (Picard-Fuchs equations)
from other linear differential equations.

About 20 years ago it was discovered and established that linear differential equations
having a geometric sense, like the Picard-Fuchs equations satisfied by the variation of
periods, possess strong arithmetic properties (global nilpotence, action of the Frobenius,

Fuchsianity,... etc). We refer to the review [1]. Since then it was suspected, that in a

certain sense, the converse is true too. We found new theoretic and experimental evidence
that show that linear differential equations with arithmetic (or integrality) properties of
their solutions arise from geometry, or, precisely, correspond to deformations of period
structure of algebraic manifolds. A variety of problems from diophantine geometry arise

here, including the irrationality and diophantine approximations to constants of classical
analysis.

We start with the definition of the basic class of function. In his seminal paper [31 on

diophantine approximations, Siegel defined and targeted for future studies two classes of
functions satisfying linear differential equations and given by power series expansions in z,

for the values of which one can establish general theorems on irrationality, transcendence
and on the measure of linear independence. These two classes are classes of E-functions
and G-functions, that command attention of modern diophantine approximations research.
The study of E-functions, started by Siegel [3-4], were significantly advanced since then by
many researchers, see particularly [5-61. We would like to mention in this connection that
only relatively recently we have proved results on the best possible measure of diophantine
approximations of values of E- functions at rational points [7]. These results present an
ultimate effective version of the Schmidt theorem [91 for the values of E-functions. In
algebraic geometry and analysis, however, most of the interesting functions are analytic
only in the finite part of the complex plane and have much better p- adic convergence

properties. Among these the G-functions play the crucial arithmetic role.

Definitionl.1. A function f(z) with the expansion at z = 0:

=(Z) a n

v =0

is called a G-function, if f(z) satisfies a linear differential equation over Q(z), if coefficients

an are algebraic numbers, and if there is a constant C > 1 such that for all n > 0 the sizes
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of coefficients a,, (i.e. the maximum of absolute values of a,, and all its conjugates) and
the common denominators den{ao,..., a,,} are bounded by C n .

Siegel introduced this class of G-functions and put forward a program to prove the
linear independence theorems for values of G-functions at algebraic points near the origin.
Unfortunately, Seigel [3] never explicitly proved general theorems for G-functions, instead
presenting examples of such theorems and presenting an outline of a theory that could be
constructed similar to the theory of E-functions. Progress in the later study of G-functions
becomes heavily dependant on additional very restrictive global "geometric" conditions,
formulated for the first time by Galo~hkin [9], that demand that the G-function property
be shared by an expansion of any other solution of a differential equation satisfied by f(z)
at any algebraic point. We called these global conditions in [10], [11] the (G, C)-conditions.
Previously known results on G- functions rely exclusively on these (G, C)-conditions, or on
equivalent ones [91, [12], [13], [11]. These global conditions can also be reformulated [121 in
terms of the p-adic "overconvergence at a generic point" of solutions of a linear differential
equation satisfied by f(x).

In [14] and [15] we had proved the general linear independence results for values
of arbitrary G-functions at algebraic points (close to the origin), without any additional
conditions. These results materialize Siegel's program after some 55 years. Also in [14], [15]
proofs of results on the absence of algebraic relations are presented. It is more important,
however, that we have proved the strong (G, C)-property for arbitrary G- functions [20].
This result, connected with our study of the Grothendieck conjecture, implies, e.g. that
all previous results on G-function theory, proved under very restrictive conditions, are
unconditionally valid for all G-functions. To describe our result, and the (G, C)-function
conditions, one needs the definition of the p-curvature.

We consider a system of matrix first order linear differential equations over Q(x),
satisfied by functions fi(z) : i = 1,...,n:

dfj(x)/dx = E A,(x)f3 (x), (1.1)
i= I

for Ai,.(z) E Q(x) : i,j = 1,... n. Rewriting the system (1.1) in the matrix form

df f /dx = Aff ; A E M (Q(x)),

one can introduce the p-curvature operators Ip, associated with the system (1.1). The
p-curvature operators TP are defined for a prime p, as

p = (d/dx - A)P(modp).

Then TP is a linear operator that can be represented as TP = -Ap(modp), where one
defines for rn > 0,

(d/dx) m = A,(modQ(x)[d/dx](d/dx - A)). (1.2)

Let D(x) be a polynomial from Z[x] that is the denominator of A, i.e. D(x)Ai,3 (x) is a
polynomial in Z[x] for i,j+ 1,... , n. The (G,C)-function condition [10]- [11] of (1.1) means
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that (1.1) is satisfied by a system (fi(x), ... , f,-(z)) of G-functions, and that there exists
a constant C2 > 1, such that for any N, the common denominator of all coefficients of all
polynomial entries of matrices D(x)mA,(x)/m! : rn = 0,..., N, is growing not faster than
C2N . With this conditions is closely related a global nilpotence condition [15-18] stating
that the matrices IP' are nilpotent for almost all primes p. The (G, C)-condition implies
,the global nilpotence condition.

In [15] we proved the global nilpotence (and the (G, C)- function condition) of linear
differential equations having a G-function solution. To prove this result we used Pad6
approximants of the second kind.

Theoreml.2. Let fi(x),..., f,,(x) be a system of G-functions, satisfying a system of
first order linear differential equations (1.1) over i(z). If fi(x),... f,,(x) are linearly
independent over i(z), then the system (1.1) satisfies a (G, C)-function condition and is
globally nilpotent.Any solution of (1.1) with algebraic coefficients in Taylor expansions is
a G-function.

Let Ly = 0 be a linear differential equation of order n over Q(z) satisfied by a G-
function y(x), and y(x) does not satisfy a linear differential equation over i(x) of order
< n. Then the equation Ly = 0 is globally nilpotent, and all solutions of the equation
Ly = 0 with algebraic initial conditions at an algebraic point x = x0 have G-function
expansions at x = z0.

Our main tool in the study of the Grothendieck conjecture, and in the current study
of globally nilpotent equations is the analytic method of Pad6, and more general algebraic
approximations to functions satisfying nontrivial complex analytic and arithmetic (>-adic)
conditions. The corresponding group of results can be considered as a certain "local-global"
principle. According to this principle, algebraicity of a function occurs whenever one has
a near integrality of coefficients of power series expansion-local conditions, coupled with
the assumptions of the analytic continuation (controlled growth) of an expanded function
in the corzplex plane (or its Riemann surface)-a global, archimedian condition.

To prove the algebraicity of an integral expansion of an analytic function, only as-
sumptions on a uniformization of this function have to be made. Our results from [19] and
[20] were proved in the multidimensional case as well, to include the class of functions,
uniformized by Jacobi's theta-functions (e.g. integrals of the third kind on an arbitrary
Riemann surface). Moreover, our result includes "the nearly-integral" expansions, when
the denominators grow slower than a typical factorial n! denominator. E.g., one of the
results [19-20], shows that g + 1 functions in g variables having nearly integral power series
expansions at 7 = 0 and uniformized near 7 = 0 by meromorphic functions of finite order
of growth are algebraically dependent.

Among the applications of this result are some partial but effective results on the
Tate conjecture on the bijectivity of a map Hom(A,B) 9 ZI - Hom(T(A),T(B)) for
Abelian varieties A and B over algebraic number fields. The Tate conjecture for elliptic
curves was left open by Serre [211 in the case when A and B have integral invariants but
no complex multiplication. Finally Faltings [22] proved (ineffectively) the finiteness of the
isogeny classes for arbitrary Abelian varieties, solving the Tate, Schafarevich and Mordell
conjectures. We proved the effective version of the Tate conjecture for elliptic curves using
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only [20] and the Honda [23] criterion of isogeny of elliptic curves in terms of the logarithms
of their formal groups over FP:

Corollaryl.3. If two elliptic curves E 1 /Q and E 2/Q have the same number of points

mod p for almost all p, (or even for almost all p below an effective bound), then E 1 /Q and
E 2 /Q are isogeneous over Q.

The demand to have a meromorphic uniformization of is a restrictive one, and, com-
bined with nearly integrality condition, limit us pretty much to class of functions uni-
formized by 0-functions. However, results similar to [19-20] can be proved for solutions of
linear differential equations uniformized by special Fuchsian groups. Namely, it is true for
functions with nearly integral coefficients that satisfy linear differential equations, whose
monodromy group is up to the conjugation a subgroup of GL,,(Q)

We have applied the Padi approximations methods used in diophantine approxima-

tions and G-functions, to the Grothendieck conjecture that determines the global (mon-
odromy) properties of a linear differential equation in terms of reductions (mod p) of this

differential equation.

TheGrothendieckConjecture. If a scalar linear differential equation of order n over
Q(x) has n solutions (mod p) in Fp(z), linearly independent over Fp(zP), for almost all
prime numbers p, then this linear differential equation has only algebraic function solutions.

Equivalently, if a matrix system (1.1) of differential equations over 4(x) has a zero
p-curvature %Pp = 0 for almost all p, then this system (1.1) has algebraic function solutions
only.

Using our local-global algebracity results, we solved the Grothendieck conjecture for
large classes of equations, including equations, solutions of which can be parametrized

by means of multidimensional theta-functions. To the class of these equations belong
equations of rank one over arbitrary (finite) Riemann surfaces [20]:

Theoreml.4. Any rank one linear differential equation over an algebraic curve, i.e. a
first-order equation with algebraic function coefficients, satisfies the Grothendieck conjec-
ture. Namely, if r is an algebraic curve (given by the equation Q(z, w) = 0) over Q, and

if the rank one equation
dF--F = w(z, w) dz (1.3)

over Q(r) (for an Abelian differential wdz on r) is globally nilpotent, then all solutions of
(1.3) are algebraic functions.

The relationship of the p-curvature operators with the monodromy (Galois) group
of a differential equation is extremely interesting. Our methods, involving various gen-

eralizations of Pade approximations, allow us to prove the Grothendieck conjecture for a

larger class of differential equations. when additional information on a monodromy group

is available. For example, if a second order linear differential equation has a commutative
monodromy group, then this equation satisfies the Grothendieck conjecture (the Lame'

equation with an integral parameter n belongs to this class). A technique from [27] using

a random walk method (in the free group, corresponding to the representation of a full
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modular group SL2(Z)), allowed us to treat crucially important class of equations. The
random walk technique used in [271 is the extension of the earlier work [281. Among the
results of [27] is a

Theoreml.5 Let Ly = 0 be an n-th order linear differential equation over Q(x) satis-
fying the assumptions of the Grothendieck conjecture. If the monodromy group of Ly = 0
is up to a conjugation a subgroup of GL, (Q), then all solutions of Ly = 0 are algebraic
functions.

Our results on the Grothendieck conjecture are effective (i.e. one has to examine only
a finite set of primes p), and can be used in various algorithms, including algorithms that
determine the reduction of Abelian integrals to elementary functions, see [24].

Various applications of our new methods to the proof of transcendence of numbers ap-
pearing as elements in the monodromy matrices of linear differential equations are possible.
One of our results is the following [28]:

Theoreml.6. Let us look at a G-function solution (f 1 (x),...,f,.(x)) of (1.1) with
algebraic initial conditions at a non-singular point of (1.1). Then its analytic continuations
along (the basis of) all possible paths leads to at least one transcendental number.

Another application is the Matthews problem (29] on indefinite integration of algebraic
functions. Let r be a curve over Q and D be any derivation of a function field Q(r). Let
f E Q(r) be such that for almost all p, we can find g in Fp(rmodp) such that, mod p,
f = Dg. Is it true then, that

f=Dg

for some g in Q(F)? (I.e. if an integral is locally algebraic at the same field, is it globally
algebraic?) The answer is yes.

While the Grothendieck conjecture tries to describe the equations, all solutions of
which are nearly integral, it is more important to find out which equations possess G-
function solutions. These equations, in all known cases, admit the action of Frobenius.

Next, all evidence points towards the conjecture that the globally nilpotent equations
are only those equations that are reducible to Picard-Fuchs equations (i.e. equations
satisfied by Abelian integrals and their periods depending on a parameter).

Our results on G-functions allow us to represent this conjecture even in a more fasci-
nating form, see [37]:

Siegel Conjecture. Let y(X) = E'7 =o CVZ ' be a G-function (i.e. the sizes of cN and
the common denominators of {co,..., cq } grow not faster than the geometric progression
in N).If y(z) satisfies a linear differential equation over Q(x) of order n (but not of order
n - 1), then the corresponding equation is reducible to Picard-Fuchs equations. In this
case y(z) can be expressed in terms of multiple integrals of algebraic functions.

Siegel, in fact, put forward a conjecture which is, in a sense, stronger than the one
given above. To formulate Siegel's conjecture we have to look again at his E-functions
defined in the same paper [3] of 1929, where G-functions were defined, and where Siegel's
theorem on integral points was proved. We remind that a function f(x) = , E,

i u! ! ! | | 5



is called an E-function is CN are algebraic numbers and for any i > 0, the size iF-N] of
cV and the common denominator of {CO,... CN) is bounded by O(N!); one also assumes
that f(X) satisfies a linear differential equation over Q(z). Siegel showed that the class of
E- functions is a ring closed under differentiation and integration. Siegel also studied the
hypergeometric functions

,,Fbi ..... b. ,X

for algebraic A # 0, rational parameters a1 ,...,am and bl,...,b,, and m < n. These
functions he called hypergeometric E=functions and suggested in [4] all E-functions can
be constructed from hypergeometric E-functions.

Looking at the (inverse) Laplace transform of f(x), we see that Siegel's conjecture
translates into a conjecture on G-function structure stronger than Siegel's conjecture given
above. Indeed, it would seem that all Picard-Fuchs equations might be expressed in terms
of generalized hypergeometric functions!

This stronger conjecture is not entirely without merit; e.g. one can reduce linear
differential equations over Q(x), satisfied by G-functions to higher order equations over
Q(z) with regular singularities at z = 0,1, oo only-(like the generalized hypergeometric
ones) cf. [231.

We are unable so far to give a positive answer to the conjecture that all arithmetically
interesting (G-)functions are solutions of Picard-Fuchs equations. Nevertheless, in some
cases we can prove that this conjecture is correct. For now our efforts are limited to the
second order equations (which provides with an extremely rich class of functions).

It is very likely that, at least for the second order equations, the Siegel conjecture can
be proved rnod-, ! the full Crclhendieck conjecture.
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2. P-adic properties and P-adic Spectrum

of Linear Differential Equations

First interesting applications of arithmetic studies of linear differential equations occur
for second order equations with 4 regular singularities,(Heun equations), and, particularly,
for the Lam6 equation:

1 1 1 1 , B-n(n+l)z+"2x + _-'- 1y + 4 (p-0 (2.1)
2 x - 4* - 1(x - a)

(depending on n and on accessory parameters B).
A more familiar form of the Lam6 equation is the transcendental one (with the change

of variables: a = k-2 , x = (sn(u,k))2 ) [26]:

d2Y +k 2  1)sn 2 (u,k)}y =0 (2.2)
du2

or
duy + {H - n(n + 1)P(u)}y = 0. (2.3)

du2

For the Lam6 equation (2.3) with an integral n defined over Q (i.e. a E Q and B E Q),
our local-global principle of algebraicity can easily solve the Grothendieck conjecture [22],
[26'. We proved in '22]:

Theorem2.1. For integer n > 0 the Lame equation has zero p - curvature for almost
all p if and only if all its solutions are algebraic functions. The Lame equation is globally
nilpotent for 2n + 1 values of B : B = B' - ends of lacunae of spectrum of (2.3).

For all other values of B, the giobal nilpotence of the Lam6 equation witth integral n
over Q is equaivalent to the algebraicity of all solutions of (2.3).

The possibility of all algebraic solutions of (2.3) with B #3 B' was shown by Baldassari
(Dwork). It can correspond only to special torsion points H = P(uo) for special elliptic
curves.

For nonintegral n no simple uniformization of solutions of Lam6 equation exits. More-
over, Lam6 equations themselves provide the key to several interesting uniformization prob-
lems. An outstanding Lam6 equation is that with n = -1/2. This equation determines the
uniformization of the punctured tori. If one starts with a tori corresponding to an elliptic
curve y2 = P 3 (x), then the function inverse to the automorphic function, uniformizing the
tori arises from the ratio of two solutions of the Lam6 equation with n = -1/2.

S, , ____

P3 (X Y" P3(2.4)Pa~xy" P(X)y' X +-Cy = O,024

or
d-Y + [H + 1P(u)]y = 0.du 2  4
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If P3 (x) =x( - 1)(z - a) (i.e. the singularities are at x = 0, a and oo), then the
monodromy group of (2.4) is determined by 3 traces x = tr(MoMi), y = tr(MoMa),
z = tr(MiMa). Here M is a monodromy matrix in a fixed basis corresponding to a simple
loop around the singularity a. These traces satisfy a single Fricke identity

X2 +y z2 - Xyz = 0.

The (Poincar6) uniformization case is that, when in (2.4) the monodromy group can
be represented by real 2 x 2 matrices. There exists a single value of the accessory parameter
C for which the uniformization takes place.

AlgebraicityProblem[27]. Let an elliptic curve be defined over Q (i.e. a E Q). Is
it true that the corresponding (uniformizing) accessory parameter C is algebraic? Is the
corresponding Fuchsian group a subgroup of GL 2 (Q) (i.e. z,y and z are algebraic)?
Conversely, if z,y and z are algebraic corresponding to a Fuchsian subgroup of SL 2(Q),
is it true that the uniformized tori is defined over Q?

Extensive multiprecision computations, we first reported in [271, of accessory param-
eters showed rather bleak prospect for algebraicity in the accessory parameter problems.

Namely, as it emerged, there are only 4 (classes of isomorphisms of) elliptic curves
defined over Q, for which the values of uniformizing accessory parameters are algebraic.
These 4 classes of algebraic curves are displayed below in view of their arithmetic impor-
tance.

We want to explain here that the attention to the arithmetic properties of the Lam6
equation with n = -1/2 arose shortly after Apiry's proof of the irrationality of (2) and

(3). His proof, 1978, was soon translated into assertions of integrality of power series
expansions of certain linear differential equations.

To look at these differential equations we will make use of the classical equivalence
between the punctured tori problem and that of 4 punctures on the Riemann sphere. For
differential equations this means Halphen's algebraic transformation between the Lam6
equation 7-.4) with n = -1/2 for P(x) = z(z - 1)(x - a), and the Heun equation with
zero-differences of exponents at all singularities:

P(x)y" + P'(z)y' + (z + H)y = 0. (2.5)

C = 4H + (1 +a).

We have already stated that there are 4 Lam4 equations with n = - 1/2 (up to M6bius
transformations) for which the value of the accessory parameter is known explicitly and is
algebraic. These are 4 cases when the Fricke equation

2 +y2 +z 2 = Xyz,

with 0 < z < y - z < xy/2, has solutions, whose squares are integers. It is in these 4 cases,
when the corresponding Fuchsian group uniformizing the punctured tori is the congruence
(arithmetic) subgroup, see references in [231, [27].

Let us look at these 4 cases, writing down the corresponding equation (2.5):

8



1) X(X2 - 1)y" + (3x2 - i)y' + zy = 0.
2) x(:2 + 3z + 3)y" + (3X2 + 6x + 3)y' + (x + 1)y = 0.
3) x(x - 1)(x + 8 )y" + (3:2 - 14X - 8)y' + (x + 2)y = 0.
4) x(z2 + 11: - 1)y" + {3X2 + 22x - 1)y' + (: + 3)y = 0.
Each of the equations 1)-4) is a pull-back of a hypergeometric function by a rational

map. In fact, for each of the equations 1)-4) there exist an integral power series y(z) =

N==O CNX satisfying Ly = 0 and regular at x = 0.
Apdry's example for s(2) arises from the equation 4) and from a solution of a non-

homogeneous equation Ly = const - 0 z(x) = F0= d,,= regular at : = 0 with nearly

integral dN (this is according to the global nilpotence of the corresponding L). Then ex-
plicit computations show that cA,/dN provide with the dense system of approximations to

(2) showing the irrationality of (2). Similarly, approximations to (3) arise from the the
symmetric square of equation 3).

These examples lead to a method of the construction of sequences of dense approxi-
mation to numbers using nearly integral solutions of globally nilpotent equations. Often
the corresponding equations are Picard-Fuchs equations satisfied by generating functions
of Pad6 approximants to solutions of special linear differentib) eoa,3tions, see examples in
[28], [29].

Diophantine approximations suggest the following problem: determine all cases of
global nilpotence of Lame equations.

Our intensive numerical experiments reveal predictable, phenomenon: it seems that,
with the exception of equations 1)-4) (and all equations equivalent to them via Mbbius
transformations), there is no Lam6 equations with n = -1/2 over Q that are globally
nilpotent. We put these observations as a

Conjecture2.2. Lam4 equations with n = -1/2 defined over Q are not globally nilpo-
tent except for 4 classes of equations corresponding to the congruence subgroups, with
representatives of each class given by 1)-4).

What are our grounds for this conjecture? First of all, Pad6 approximation technique
allows us to prove one positive result in the direction of this conjecture for the n = -1/2
case of the Lame equation.

Theorem2.3. For fixed a E Q (a $ 0, 1), there are only finitely many algebraic numbers
C of bounded degree d such that the Lami equation with n = -1/2 is globally nilpotent.

Of course, one wants a more specific answer for any other n (e.g. for n = -1/2,
there are only 4 classes of a and C given above with the global nilpotence). However for
half-integral n, there are always n - 1, 2 trivial cases of global nilpotence, where solutions
are expressed in terms of elliptic integrals.

We have started the study of globa!!y nilpotent Lam6 equations (2.4) or (2.5) with nu-
merical experiments. This ultimately led to Conjecture 2.2. We checked possible equations
of the form (2.5) with

P(X) = X(:2 - alx + a),

9



i.e. 4 singularities at z = 0, o and 2 other points, for values of

al,a E Z

in the box: jaI, [a _I< 200.
For all these equations (2.5) we checked their p-curvature for the first 500 primes. Our

results clearly show that with an exception of 4 classes of equations equivalent to 1)-4),
any other equation has a large proportion of primes p such that the p-curvature is not
nilpotent for any H E Q!

An interesting p-adic problem arises when, instead of globally nilpotent equations one
looks at the nilpotence conditions of p-curvature for a fixed p or, equivalently, when there
is a p-integral solution for a fixed p. The only known case (Tate-Deligne), corresponds
to Lame equation with n = 0, where the unit root of the i-function of the corresponding
elliptic curve is expressed in terms of a unique accessory parameter. This example suggests
a definition of p-adic spectrum, which we use only for Lame equations.

We are interested in those Hmodp for which the p-curvature of (2.5) is nilpotent, and
particularly in those p- adic H E ZP for which there exists a solution y = y(x) of (2.5)
whose expansion has p-integral coefficients. We call those H E ZP, for which such y(X)
exists, eigenvalues of (2.5) in the "p-adic domain", and their set we call "an integral p-adic
spectrum". The problem of study of arithmetic nature of Lam6 equation was proposed by
I.M. Gelfand.

To determine p-adic spectrum we conducted intensive symbolic and numeric compu-
tations, usint SCRATCHPAD (IBM), MACSYMA (Symbolics) and array processors.

We start with the observations of the "mod p" spectrum as p varies.
I. For noncongruence equations (2.5) with rational a : 0, 1 (i.e. for an elliptic curve

defined over Q with a point of order 2) there seem always to be infinitely many primes
p for which no value of the accessory parameter H mod p gives a nilpotent p-curvature
(thus mod p spectrum is empty).

Sometimes the first prime p, for which the mod p spectrum of (2.5) is null, occurs
quite far. Here are a few statistics for noncongruence equations with rational integers a:

For a = 3 the first p's with the null spectrum mod p are: p = 61, 311, 677, 1699, 1783,
1811, 2579, 2659, 3253,.... For a = 5 the first p's with the null spectrum mod p are: p
= 659, 709, 1109, 1171, 1429, 2539, 2953, 2969, 3019, 3499, 3533, 3803, 3863, 4273, 4493,
4703, 4903, 5279, 5477, 5591, 6011, 7193, 7457, 7583,. For a -- 4 the corresponding

p's with the null spectrum are: p = 101, 823, 1583, 2003, 3499,.... For a = 13 the

corresponding list starts at: p = 1451, 1487, 2381,....
Observation I above was checked by us for all noncongruent P(z) = z(z 2 - aiz + a)

with integral aLa not exceeding 250 in absolute value.

II. An integral p-adi,. spectrum of equations (2.5) with (p- integral) a has a complicated
structure depending on the curve. p-adic spectrum can be null, finite (typically a single
element), or infinite, resembling the Cantor set.

Numerical analysis is not easy either. For example, in order to determine the 3-
adic spectrum with 14 digits of precision (in the 3-adic expansion), one has to carry out

computations with over 2,000,000 decimal digit long numbers!

Example above show how globally nilpotent equations can be used for interesting
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arithmetic applications, particularly irrationality proofs. We suggest, as a starting equa-
tion, when it is of the second order, an equation corresponding to an arithmetic Fuchsian
subgroup. Congruence subgroups of r(1) and quaternion groups provide with interesting
families of globally nilpotent equations.

One can start with equations uniformizing punctured tori with more than one punc-

ture. The complete description of arithmetic Fuchsian groups of signature (1; e) had been
provided by Maclachlan and Rosenberger [30] and Takeuchi [31].

For all (1; e) arithmetic subgroups there exists a corresponding Lame equation with
a rational n, uniformized by the corresponding arithmetic subgroup. This way we obtain
70 Lame equations, all defined over Q. Some of these equations give rise to nearly inte-
gral sequences satisfying three-term linear recurrences with coefficients that are quadratic
polynomials in n, and have the growth of their denominators and the convergence rate
sufficient to prove the irrationality of numbers arising in this situation in a way similar to
that of Apery.

Groups of the signature (1; e) correspond to the Lame equations

P(z)y" + 1 over2P'(x)y' + (C- n(n + 1)

with n + = le.

In the arithmetic case one looks at totally real solutions of the modified Fricke's
identity, which now takes the form:

x2 +Y +z xyz = 2(1 - cos(,i)).
e

Using numerical solution of the (inverse) uniformization problem, we determined the
values of the accessory parameters. We display simplest examples:

Here P(z) = x(z - 1)(z - A) and:
(1;2)-case:
1) A = 1/2, C = -3/128,
2) A = 1/4, C = -1/64;
3) A = 3/128, C = -13/211;
4) A = (2 - V/5) 2 , C = vr5' (2 - v5) / 64;

5) A = (2 - '/I)4, C = -(2 -
6) A = (21V - 27)/256,
(1 ;3)-case
1) A = 1/2, C - -1/36
2) A = 32/81, C = -31/24. 34;

3) A = 5/32, C = -67/20. 32;
4) A = 1/81, C = -1/2.34;
5) A = (8- 3N-)/2,

11



3. Continued Fractions and

Applications to Diophantine Approximations.

We start this brief exposition of our results on diophantine approximations with the
following translation of our conjectures from §§1-2 on globally nilpotent equation into
classical problem of nearly integral solutions to linear recurrences.

Problem. Let u,, be a solution of a linear recurrence of rank r with coefficients that
are rational (polynomial) in n:

r-1

un+r= Z Ak(n) u,

kC=O

for Ak(n) E Q(n) : k = 0,... ,r - 1, and such that u,, are "nearly integral". Then the
generating function of u,n is a function whose local expansion represents either an integral
of an algebraic function or a period of an algebraic integral, i.e. a solution of Picard-
Fuchs-like equation.

For continued fractions this problem can be reformulated.
Problem'. Let us look at an explicit continued fraction expansion with partial fractions

being rational functions of indices:

a = [ao; a,,..., A(n), A(n + 1)....,

for A(n) E Q(n). Let us look then at the approximations Pn/Q, to a defined by this
continued fraction expansion. If the continued fraction representing a is convergent and
for some c > 0

Ia - < IQ-I-'-':

n > no(e), i.e. if a is irrational, then the sequences P, and Qn of numerators and denom-
inators in the approximations to a are arithmetically defined sequences; their generating
functions represent solutions of Picard-Fuchs and generalized Picard-Fuchs equations.

How often do such continued fraction expansions do occur, apart from classical cases
known to Euler (Hermite in the multidimensional case)? One of the main purposes of our
investigation was an attempt to establish, first empirically, that there are only finitely many
classes of such continued fraction expansions all of which can be determined explicitly.

In applications to diophantine approximations, a particular attention was devoted to
three-term linear recurrences like:

n U= Pd(n) . - Qd(n) .uf-2 : n > 2

for d > 2. Apart from trivial cases (reducible to generalized hypergeometric functions),
our conjectures claim that for every d > 1, there are only finitely many classes of such
recurrences that correspond to deformations of algebraic varieties.

12



For d = 2 (second order equations) we have classified nontrivial three-term recurrences
whose solutions are always nearly integral, assuming our integrality conjectures. Most of
these recurrences are useless in arithmetic applications. There are a few new ones that
give some nontrivial results. Among these recurrences are the following:

i) 2n 2u = 2(-15n2 + 20n - 7) .U_ + (3n - 4)2 U.-2;

ii) 3n2 u, = (-12n 2 + 18n - 7) u u,- + (2n - 3)2 u,-2;

iii) n2un = (-12n 2 + 18n - 7) • U,-1 + (2n - 3)2 • u,-2;

iv) n2 "Un = (56n 2 - 70n + 23). u,,_ 1 - (4n -5 )2 - Un_.

There is a larger class of rank r > 2 linear recurrences of the form

r

k=

all solutions of which are nearly integral. Many of these recurrences give rise to new
irrationalities. E.g. we present the following new globally nilpotent equation (r = 3):

4x(X 3 + 16X2 + 77x - 2)y" + 8(2X3 + 24X2 + 77: - 1)y' + (9X2 + 70x + 84)y = 0.

Recently, studying Lam6 equations we discovered new classes of explicit continued
fraction expansions of classical (special) functions, related to problems above. These con-
tinued fraction expansions include many Stieltjes-Rogers' continued fractions and are re-
lated to elliptic theta-functions [62-631.

Stieltjes-Rogers' expansions (see[33]) include the following examples:

o00 _ 1 1. 2 • 3k 2 3.4 2 • 5k 2  5.6 2 •7k 2 3

sn(u,k2 )e-du Z 2 + a- Z2 + 32a - Z2 + 52a - Z2 + 7a2 - ... (3.1)

. ° 0 2= 2 2.3 2 4k 2 4 . 52 6k2  6.7 2 .8k 2

. z 2 + 22a- z 2 + 42 a- z 2 + 62a- z2 + 82a -

a = k2 + 1.

In the case of expansion (3.1) the approximations Pm/Qm to the integral in the left
hand side of are determined from a three-term linear recurrence satisfied by P, and Q,

(2m + 1)(2m + 2)0, m+(z) = (z + (2m + 1)2a)0'm(z) - 2m(2m + 1)/k20,_1(Z).

Here 0,,, = Pm. or Qm, and Q, are orthogonal polynomials. The generating function
of Q,, satisfy a Lam6 equation in the algebraic form with a parameter n = 0.

These special continued fraction expansions can be generalized to continued fraction
expansions associated with any Larn equation with an arbitrary parameter n.

For n = 0 these closed form expressions represent the Stieltjes-Rogers expansions. For
n = 1 two classes of continued fractions from [27] have arithmetic applications, because for
three values of the accessory parameter H (corresponding to ei-nontrivial 2nd order points)
the Lam6 equation is a globally nilpotent one and we have p-adic as well as archimedian
convergence of continued fraction expansions. This way we obtain the irrationality and
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bounds on the measure of irrationality of some values of complete elliptic integrals of the
third kind, expressed through traces of the Floquet matrices. Similarly, for an arbitrary
integral n > 1, among continued fraction expansions, expressed as integrals cf elliptic
0-functions, there are 2n + 1 cases of global nilpotence, when continued fractions have
arithmetic sense and orthgonal polynomials have nearly integral coefficients.

Among new explicit continued fraction expansions is the expansion of the following
function generalizing Stieltjes-Rogers:

f c(u - UO) eC(uO)du"

The three-term linear recurrence determining the J-fraction for the corresponding
orthogonal polynomials has the following form:

QN(-) = QN-I(x){(I+k 2) .N-1)2+X}+QN-2(X).k4.(N- 1)2.N.CN-) 3

Here z = sn 2 (uo;k).
The more general J-fraction of the form

b'.b + +- X

b, + x a,

bn,+l + X- '

with
1 1 1 n.(m-+)

an = 0n- (n + 1) .(n + )(n - ).{(n - 1) (n - ) - 4

bn = (1 + k) (n - 1)2 : n> 2

is convergent to the integral of the form

oJ H(u - u) &z(uu)udu.

The generating function of the corresponding orthogonal polynomials is expressed in
terms of solutions of a Lame equation with parameter m > 1.

Arithmetic applications, particularly to the determination of measures of irrationality,
of classical constants often require E- or G-function representations. Rapidly convergent
nearly integral power series expansions are the most efficient way to construct Pad6 approx-
imations and determine the arithmetic nature of classical constants. We have developed
the theory of new identities giving such representations [321. They generalize Ramanujan's
quasiperiod relations 1341 that give generalized hypergeometri series of multiple of l/7r. To
introduce Ramanujan's series we first need Eisenstein's series:

2k ccq,

Ek(r) = 1- 1 ork-I(n)q'
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for ok- I (n) = Zdl, dk- 1 , and q = e2 ,' . In the Ek(r) notations, the quasiperiod relation
is expressed by means of the function

S2(,) 4e E-(r) - (E 2 (r) 3 (3.2)
E 6 (r) r Im (r)

which is nonholomorphic but invariant under the action of r(1).
Ramanujan proved in [341 that this function admits algebraic values whenever r is

imaginary quadratic.
The Clausen identity gives the following 3 F2- representation for an algebraic multiple

of 1/ir, following from (3.2):

cc - ( r)) + ) (6n)! 1 (3 3)
{=O6 (3n)!n!3 J(r)n 33

(_-(r)) 1/+ 1

7r 2(d(1728- J(r))-/2

Here r = (1 + v'"d)/2. If h(-d) = 1, then the second factor in the right hand side is a
rational number. The largest one class discriminant -d = -163 gives the most rapidly
convergent series among those series where all numbers in the left side are rational:

cc (6n)! (-I)" (640,320)3/2 1
,=o (3n)!n! 3 (640,320)n 163.8- 27.7 11. 19 127 7r"

Here
13,591,409

163 .2. 9 .7.11 .19. 127

and J('+" ) = -(640,320)3.
Ramanujan provides instead of this a variety of other formulas connected mainly with

the three other triangle groups commensurable with r(1). All four classes of 3F2 represen-
tations of algebraic multiples of 1/r correspond to four 3 F2 hypergeometric functions (that
are squares of 2Fl-representations of complete elliptic integrals via the Clausen identity).
These are

1 1 5 00 (6n)! n3F2( ,-, ; 1, 1;x) = E (3) ! ( --L)

2 6 6 n=O(3n)!n!3 2
*00

1 3 1 X) (4n)! L n3F(-,- -:1; ,1;z) = .,, ( 1)
4 4 2 n44

1 1 1 00 (2;) 1

3F '2( ,2 , , 26

1 2 1 0 (3n.)! (2n)!(x n).
3 F 2 (-3, - 1, 1; X) E n13 nj2 (,T3.2 2

n=O
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Representations similar to (3.3) can be derived for any of these series for any singular
moduli r E Q(V/-d) and for any class number h(-d), thus extending Ramanujan list ad
infinum. For a simple recipe to generate these new identities, see [32].

Logarithms of quadratic units, like 7r, can be represented as values of convergent series
satisfying Fuchsian linear differential equations. This holds for log c/k of a fundamental

unit ev1 of a real quadratic field Q(VT). To represent this number as a convergent series
(in, say, 1/J(r)) one uses Kronecker's limit formula expressing this logarithm log E /- in
terms of products of values of Dedekind 's A-function ("Jugendtraum").

Ramanujan's and other similar identities that express 7r and other similar numbers in
terms of values of G-functions very close to the origin, give us the basis of applications of our
Pad6 approximation techniques to these G-functions. In such applications the exponent
in the measure of diophantine approximations strongly depends on the proximity of an
evaluation point to the point of expansion of a G-function. To make this dependence
explicit, we quote the following our result 114]:

TheorernM3.1[14]. Let f 1(z),..., f (z) be G-functions satisfying linear differential equa-
tions over Q(x). Let r = a/b, with integers a and b, be very close to the origin. Then we
get the following lower bound for linear forms in fj(r),... ,f(r).

For arbitrary non-zero rational integers Hl,...,H, and H = max{IHiI,...,H,1}, if
Hifi(r) + ... + Hf,(r) # 0,

IHxfl(r) + ... + Hnf (r)l > HI HnI H -

provided that r is very close to 0:

I >__ c l la ln n , ,

and H > c2 with effective constants ci = ci(f 1 ,...,fn,r,e). If r is not as close to 0, we
get only

IHif(r) + ... + Hf(r)I> H -

for A = -(n - 1) log Jb/log lb/a'l(< 0).
We will present some of the results for numbers connected with 7r based on effective

Pade approximations with schemes described in [29], [35]. The first bound is connected
with Ramanujan-like series:

jirvr- p/qj > 1qj
7- 6 7...

for rational integers p, q :qI > q0 .
For rv'3 we use different system of Pad&type approximations [28]. Below we present

the corresponding integral representations, leading to the bound:

1Jrv' - p/qj > lql - '*70''"

for Iql > q2.
To cover large classes of numbers we generalize the Ramanujan theory quasi-period

relations to the general CM-varieties. Particularly interesting applications arise for arith-
metic triange (quaternion groups [32]). To present some examples of such relations, we
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look at the automorphic function 0(r) for the arithmetic triangle group r, normalized by
its values at vertices.

An analog of .s2 (T) in (3.2) that is a nonholomorphic automorphic form for r is

1 .f " (r ) i- I .
0( )

For 0(r) = J(r) one gets s 2 (r).
For example, let us look at a quaternion triangle group (0;3;2,6,6). In this cast,

instead of an elliptic Schwarz formula one has the following representation of the normalized
automorphic function 0 = ((r) in H in terms of hypergeometric functions:

r+ i (vr + ,/3)_ 31/2 r(1/3) }e  F(-, 1 .; i-.)

r - i(vi+ - • 21/6 4 12 6

The role of ?r in Ramanujan's period relations is occupied in
(0,3; 2,6,6)-case by the transcendence {r 1/3) }6.
Thus, generalizations of Ramanujan identities allow us to express constants, such as 7r

and other r-factors, as values of rapidly convergent series with nearly integral coefficients
in a variety of ways, with convergence improving as the discriminant of the corresponding
singular moduli increases.

Another interesting dimension in all these identities is an ability to add p-adic inter-
pretation to them. We are developing now a variety of p-adic analogs of such identities to
be used for diophantine and for numerical applications.

We refer also to our papers [43], [44] and [Maine] for a variety of applications of ef-
fective Pad6 approximation techniques to measures of diophantine approximations. These
techniques, particularly from [29] and [371 are based on multiple integrals of Pochham-
mer type and the combination of symbolic and numerical methods to determine the best
sequences of dense approximations to such numbers as 7r, In 2, /{312.
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4.Computer Algebra and Numerical Computations.

Our work on computer algebra systems included the development of new algorithms of
symbolic manipulation with algebraic numbers and functions, solution of algebraic, differ-
ential and integral equations, and development of algorithms combining computer algebra
and numerical methods. We refer to [27] for description of computer algebra methods aris-
ing from elliptic curves and Abelian varieties with applications to number theory, including
diophantine approximations, primality testing and factorization, to algebraic topology, K
- theory and superstring interpretation, and to uniformization theory.

Some of our methods developed for the study of arithmetic properties of linear differ-
ential equations, were used in the development of computer algebra systems themselves.
This includes new methods of power series manipulation, and, in particular, fast algo-
rithms of power series expansions of solutions of differential equations [31], [61]. These
methods also led to new algorithms of explicit integration of algebraic functions, including
the determination of all cases, when this is possible (this is closely related to our solution of
the Grothendieck problem, see [21], [27]). In the environment of computer algebra systems
we were developing some new number-theoretic algorithms, including new algorithms of
bignum operations, factorization, and new modular algorithms of fast convolution. All
this work was conducted in the environment of traditional computer algebra systems, par-
ticularly within MACSYMA and SCRATCHPAD 11 environments. Of these we mainly
benefited from the impressive capabilities of SCRATCHPAD (IBM), which showed itself
capable of handling very large computational tasks and providing with a very flexible pro-
gramming support. Our involvement with SCRATCHPAD benefited our theoretical and
applied work, and gave us high hopes for its future utilization, especially when it will be
widely released.

At the same time as we used the general purpose computer algebra systems, we are
developing specialized packages for specific tasks and applications. An acute need in such
specialized packages is felt in the development of software support for handling large com-
putational tasks for vector and parallel machines based on modeling or simulation of realis-
tic physical or engineering problems. Among classes of problems that we are interested in,
we would like to mention: solution of boundary value problems, study of multi-dimensional
elliptic problems for domains of complex boundary structure, development of parallel al-
gorithms for solution of two-dimensional and three-dimensional aero- and hydro- dynamic
problems, and the study of astrophysical models, combining chemistry, thermodynamics,
gravitation and relativistic effects. Development of vectorized and parallelized codes for
these problems is necessary because large realistic modelling is possible only on supercom-
puters and massively parallel machines, with GigaFlops of performance and GigaBytes of
storage. The issue of parallelization and, particularly, intercommunication between many
processors is an important and challenging mathematical problem in itself. It leads to
a variety of outstanding questions of complexity, number theory and graph theory. We
present in the Appendix results of one of our works (jointly with M. M. Denneau) on the

construction of optimal sparse networks.
We use computer algebra systems to develop optimized numerical algorithms for solu-
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tion of specific equations and modelling of physical processes. We also use computer algebra
systems to map developed algorithms to vector or parallel organizations of large machines
and supercomputers. Both of these tasks are so involved and time consuming that with-
out support of the computer algebra environment they cannot be efficiently accomplished.
As an example of our involvement, let us describe our work on optimization of two -and
three- dimensional aero -and hydro- dynamic codes. Part of this work started a few years
ago, when we together with K. Prendergast (Dept. of Astrophysics, Columbia University),
conducted numerical simulation of underground explosion in cavities of varying geometry
for the Hudson Institute and DOD. The code was the so-called beam-scheme, quite robust
general hydrodynamics code used in many problems of fluid and flow dynamics.

Recently we returned to fluid and flow problems, when we started to look on ex-
amples of large sale problems that cannot be solved without parallel processing, due to
their numerical complexity and memory requirements. One of the best examples of such
modeling is provided by astrophysical and cosmological numerical experiments. In these
experiments the goal is to simulate all known complexities of galaxy formation and evolu-
tion. This includes interactions of stars, interstellar matter, gravitational fields, chemistry
and thermodynamics and the presence of dark matter. Three - dimensional simulations,
involving large number of objects (requiring at least a million of grid points) over a long
period of galaxy life are some of the most numerically and memory intensive challenging
tasks. Optimization of numerical algorithms and their parallelization are necessary in or-
der to tackle these problems and give to astrophysicists sufficient amount of data to study,
and to develop better models of physical processes.

Our current work involves three - dimensional multifluid models, combining chem-
istry, thermodynamics, gravitational potential and global gravitational effects, and a de-
tailed look at each cell. In development of better numerical methods computer algebra
techniques and tools were an important component. The code itself is extremely floating
point intensive, because it involves at every discrete time step computations of a variety
of elementary and special functions, including EXP, ERFC (error functions) and several
complicated integrals. For example, per grid point (a million of them), per discrete step
(about 105 of them), one has to compute with high accuarcy values of 4 integrals of the
form f 00 e-(,-d)2 zk sqrtz2 + c2

sqrtz2 + C2 dx.

Standard numerical quadrature methods (e.g. Gauss - Hermite) and library calls (sach
as NAG, IMSL, CRAY, IBM ESSL-V, etc.) make this part of computations prohibitively
expensive. Using our methods of fast computation of solutions of linear differential equa-
tions we developed with help of computer algebra systems a fast method of high precision
evaluation of this and other similar integrals. Such a development, combined with the full
parallelization now allows to implement three - dimensional code on multiprocessor ma-
chines, and make the runtime of the code tolerable for modeling of a variety of initial and
boundary conditions. We are now running a variety of new codes for these astrophysical

problems in two fluid version for systems with spherical and cylindrical symmetries on a
variety of general purpose and special computers (some of the hardware designed by us).
We are preparing now for large runs of three-dimensional codes on supercomputers.
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5. Basic Algebraic Complexities.

Algebraic complexities were originally developed to describe the number of opera-
tions: multiplications (multiplicative complexity) and additions (additive complexity) in
traditional algebraic structures: rings of matrices and rings of polynomials. While the
operation of addition in such rings is straightforward, it is by no means obvious how to
realize the operation of multiplication in these rings in the least number of operations on
primitives (numbers), particularly in the least number of multiplications.

The algebraic complexity problem which is the richest in its underlying structure is
the problem of fast polynomial multiplication. Among other problems reducible to that
one can mention: fast multiplications of multiple-precision numbers, gdc's in polynomial
rings, Hankel matrix multiplication, computation of rational and Pad6 approximations,
computation of finite Fourier transformations,...etc. Significant progress in this problem,
due to Winograd, Fiduccia, Strassen and others, was concentrated mainly on minimal
multiplicative complexities of polynomial multiplication over infinite fields. For practi-
cal, particularly hardware implementations, and in applications to fast multiplication of
multiple precision numbers all algorithms have to be considered over a ring Z or Z[1/2.

We have developed new low complexity algorithms arising from interpolation on al-
gebraic curves of positive genus and on arbitrary algebraic and arithmetic surface. We
precede the description of these algorithms with a short exposition of complexity count
and Toom-Cook ordinary interpolation method.

The (multiplicative) complexity is well defined for systems of bilinear forms [38-391.
Let A be a ring (of scalars), and suppose given s bilinear forms in variables Y = (I , ... , Xm)

and - (y/,..., ,) with coefficients from A:

m n~

k= tikiyi : k = 1,...,,. (51)

One of the most widely used definitions of the multiplicative complexity of computa-
tion of a system (5.1) over A is that of the range of the m x n x s tensor (ti.,,k) over A
(Strassen). A nonzero tensor T is said to be of rank 1 over A. If there are three A-vectors
(a,...,a.), (b1,...qbn), (c1 ... ,) such that

ti~j k = a, • b, • ck for all ij,k.

Then, the rank of a tensor T over A is the minimal number, 6 A, such that T is
expressible as a sum of 6 A rank 1 tensors over A. This scheme of evaluation of (5.1) is
called a bilinear scheme (normal or noncommutative). In this scheme for the evaluation
of a system of bilinear forms (5.1) one forms 6 products of linear combinations of x's and
y's:

w, = (aiix1 + ... + agmzm)(bgIYL + ... + , (5.2a)
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I = 1,... ,b; and then obtains z's in (5.1) as linear combinations of these products:

Zk = CkIWI + ... + Ck6W 6 : k = 1,... ,s. (5.2b)

In this definition of multiplicative complexity one counts only non-scalar (essential)
multiplications, i.e. 6 multiplications in (5.2a).

For future reference, we express the bilinear algorithm (5.2a)- (5.2b) of computation
of bilinear forms (5.1) in the following algebraic form

Y= C .- A @ V (5.3)

for matrices C = (ckL)(E M., 6 (A)), A = (alj)(E M 6 x,,(A)), B = (b~i)(E M 6 x,(A)).
If one extends the ring of scalars by inverting primes and by adding algebraic num-

bers (most notable roots of unity), one can often significantly reduce the multiplicative
complexity of computation of systems of bilinear forms. This is the case of polynomial
multiplications. Unfortunately, simultaneously the total computational complexity of the
algorithms (as reflected in the total number of bit operations) becomes unbearably high.
That is why the "least complex" algorithms of polynomial multiplication, developed by
Toom-Cook-Winograd [38-39] are unattractive in practice for (relatively) large degrees.
We describe briefly these algorithms because they provide clues to the use of interpolation
technique.

The basic idea underlying the Toom-Cook method is to use interpolation is reconstruc-
tion of coefficients of a product of two polynomials. Namely. let us consider the bilinear
problem (5.1) corresponding to the multiplication of two polynomials of degree rn - 1 and
n - 1, respectively:

mn n
P(t) = zt'-', Q(t) = Zyiti-I (5.4)

1=1 j=1

One is interested in the efficient determination of coefficients zk of a polynomial prod-
uct: rn+n-I

R(t) def P(t). Q(t), R(t) = E zktk - ' . (5.5)
k=1

A "high school" scheme of evaluation of (5.5) takes mn multiplications (but no scalar
multiplication). Toom noticed, however, that one can identify R(t), if one knows its values
at rn + n - 1 distinct points ak : k n,... ,+ n - 1 in terms of the Lagrange interpolation
formula:

f+l- nlk(t - a) (5.6)R ( t) = E R ( k ) (5.6)#-( ...- )

k=1

Thus if one assumes the ring A to include aj and (a, - aj)- (for i # j), then one
can reconstruct all rn + n - I coefficients zk of R(t) from R(ax) using scalar multiplications
only. To compute R(ak) one needs then only m + n - 1 nonscalar multiplications:

R(ak) = P(at) Q(ak), (5.7)
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where P(ork) and Q(ak) are computed by the Horner scheme in (5.4) with scalar (from A)
multiplications only.

The Toom-Cook scheme was generalized by Winograd, who showed that one can eval-

uate R(t) mod arbitrary relatively prime polynomials D,,(t), and then bring the results
together using the Chinese remainder theorem and without any nonscalar multiplications
to obtain R(t) mod rl, D,(t). Toom-Cook took D,,(t) = t - a, while Winograd consid-
ered DR,(t) as cyclotomic polynomials. Optimal results of polynomial multiplication and
multiplications in algebras Atxz/(T(x)) (i.e. polynomial multiplication modT(x)), when
A = K is a infinite field, are described by the following Winograd's

Theorem5.1: Let K be an infinite field. Then the multiplicative complexity, 6K(m, n),
of multiplication of polynomials of degrees rn - 1 and n - 1 over K[x] is rn + n - 1 exactly.
The multiplicative complexity, 6K(T), of multiplication of polynomials in K[z] mod T(z)
for T(x) E K[x] is equal to 2n - k, where k is a number of distinct irreducible factors of
T(z) in K[x].

Though these results are strong, none of them can be applied in practice (starting
from rn > 4, n > 4) because in any of the schemes of minimal multiplicative complexity
(over, say, Q), the scalar multiplications not counted as "actual multiplications"-involve
scalars that are too large to be bounded as just a few more additions. Also one has to
divide by large integers having no advantageous binary structure.

Not only the large sizes of scalars make the number of additions prohibitively - ex-
ponentially - large, but the coefficients become large integers requiring fast bignum multi-
plications. The total number of operations, counted in terms of single precision additions
and multiplications, in the "minimal multiplicative complexity" algorithms of Theorem
5.1 significantly exceeds the number of operations in the standard high school methods of

polynomial multiplication. This makes the minimal multiplication complexity algorithms
of Theorem 5.1 unsuitable for practical implementation. The minimal multiplication rou-
tines of Theorem 5.1 found their place, though, in Winograd's short prime length DFT

algorithms; they are well suited for iterations when one uses them only for short data sizes.

It is more efficient in practice to use fast multiplication routines with as little divi-
sion by scalars as possible (and no prime inversions!). From the point of view of hardware
realization it is preferable to have division by power of 2 only, i.e. one should consider min-
imal multiplication schemes over A = Z11/21. It was realized some time ago ([Schonhage-
Strassen] [41-421) that one can achieve fast multiplication of polynomials with division by 2
only, if one considers polynomial multiplications modulo cyclotomic polynomials (x2 -1).
This general scheme, coupled with fast Fourier transforms in finite fields (modulo factors of
Fermat numbers) was used first by [41] to achieve asymptotically fast multiplication of large
integers. In that method one can multiply two n-bit integers in time O(n log n log log n)
(i.e. in the many bit-operations).

We see that linear upper bounds for multiplicative complexities of polynomial mul-

tiplication (given, say in Theorem 5.1) imply subexponential lower bounds for additive
complexities of these algorithms. The best upper bounds for the multiplicative complexity
of computation of polynomial multiplication via certain versions of FFT are 0(n log n) for
polynomials of degrees bounded by n, even though divisions by powers of 2 (shifts) are
necessary in this scheme. No nonlinear lower bound is known for algebraic complexities in
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this problem, and the best total complexity known is 0(n log n log log n).
To see what can be the Z-algorithms of fast polynomial multiplication, we have to

consider first the reductions mod p, and to look at algebraic complexities of polynomial
multiplications of A = Fp, particularly over A = F 2.

Over finite fields there is no simple answer to the minimal multiplicative complexity
of polynomial multiplication like one given in Theorem 5.1 for infinite fields. If 6 A(m, n)
denotes the minimal multiplicative complexity of multiplication of polynomials of degrees
rn- 1 and n- 1, respectively, with a ring of constants A, then we always have &K (m, n) >_
rn + n - 1 for an arbitrary field K of scalars, but this inequality becomes equality only
when K has at least m + n - 2 elements.

As it turns out, lower bounds for multiplicative complexities over finite fields, and, as
a consequence, over the ring A of scalars, are much stronger than the one given above. To
obtain them, though, the algebraic theory of linear codes has to be introduced.

Let us recall the basics of linear codes. In the theory of linear codes one considers
vector spaces F' of dimension n over a finite field Fq. A linear subspace is called a linear
code. A linear code is the null space of a parity check matrix of the code, and a basis of
the code form the rows of the matrix, called a generator matrix. In addition to n, two
more parameters: k and d are associated with a code (called an [n, k, d-code). First, we
denote by k the dimension of the code over Fq. Second, by the weight of the code, denoted
d, we understand the minimal number of nonzero coordinates of all nonzero vectors from
the code with respect to a fixed basis of the vector space.

We will demonstrate the relationship between (multiplicative) complexity of multipli-
cation in k-algebras and the Hamming problem for linear codes over k in the most general
situation:

Corollary5.2 : If A is a F.- algebra of dimension n over F. and without zero divisors,
then every realization of multiplication in A over F. as a bilinear algorithm with b =

bF, (A) nonscalar multiplications over Fq gives rise to a [6, n, n]-linear code over F,.
Corollary 5.2 includes, in particular, all finite extensions of prime fields.
The iroof of Corollary 5.2 also provides important clues as to matrices A, B and C

in the algebraic form (5.3) of the algorithm of multiplication in k-algebra A.
Using Corollary 5.2 and known lower bounds from the theory of linear codes, one can

bound from below the multiplicative complexity of polynomial multiplication. One of the
best linear code bounds is (MRRW) proved in 143]. According to this bound for q = 2, if
n - oo and there is a sequence of [n, k, di-codes with d/n -- 6, then R d=k k/n < H2(1/2 -
Vi - 2). Here the entropy function is Hq(z) = -zlogz - (1 - z)log,(1 - x). Such
bound was used in [44] to bound the multiplicative complexity F, (n, rn) of multiplication
over F 2 of polynomials of degrees n - I and m - 1 respectively: bF,(n,n) >_ 3.52 . n, and
6z(n,n) > 3.52. n for a sufficiently large n.

Our new results show that similar lower bounds hold for multiplicative complexity
of multiplication in finite extensions of F9 . Indeed let K = Fq[t]/p(t), for an irreducible
polynomial p(t) of degree n in Fq[t! , so K S, F,-; and let 6p,(K) denote the minimal
multiplicative complexity in the field K over F.. Then Corollary 5.? implies that there
exists a 14F, (K), n, n]-linear code over F.. Thus we deduce the lower bound

6F,(K) > 3.52n (5.8)
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for sufficiently large n = [K : F 2[.
For q _> 2 one gets less sharp bounds from known bounds on optimal codes. For

example, the Plotkin bound implies
1

6F, (K) (2 + - ) n

as n [K : Fq - oo.
We found an important phenomenon for polynomial multiplication over finite fields

drastically different from the infinite field case. In the case of an infinite field of constants
k, Winograd's Theorem 5.1 shows that multiplication mod an irreducible polynomial p(t)
of degree n takes as many essential multiplications as that of multiplication of two poly-
nomials of degree n - 1. It is no longer true in the finite field case, when we always
have k(kt]/(p(t))) + C .n < bk(n,n) for a positive constant C(= C(k)) and an arbitrary
polynomial p(t) of degree n over a finite field k. We conjecture, that in fact

lim 6k(n, n) = 2.0.
n-,oo:k=n 6k(K)

The lower bounds for multiplicative complexities of polynomial multiplication are
always linear in n, and seem far from the best nonlinear upper bound O(n log n) for finite
field polynomial multiplication. We have shown that the upper bound can be brought
down to a linear one with the constant comparable to that of the lower bound.

To describe new algorithms, we look at arbitrary meromorphic (rational) functions.
These rational functions, like polynomial can be represented in a variety of ways. They
can be represented as P(t)/Q(t), in terms of its residues: Co + Z n 1 ci/(t - ai), or by its
values at a given set of points. The last representation is the interpolation. Interpolation
formulas are the basis of the Toom- Cook algorithm of the fast polynomial multiplication.
Apparently the interpolation algorithm always has the lowers multiplicative complexity.
The most important polynomial multiplication problem is that of multiplication in a finite
extension K = k[t]/(ip(t)) for a fixed p(t) E k[t] and field of constants k. Let 6k(K) be the
multiplicative complexity of multiplication in K over k. For an infinite k and K of degree
n over k, bk(K) = 2n - 1 by Theorem 5.1, and all algorithms realizing this multiplicative
complexity are interpolation algorithms, interpolating products x(t) .y(t)modp(t) at 2n- 1
distinct points of kP 1 . What happens if k is finite, say F 2 ? There are not enough points
interpolate at. What usually is done, is an extension of the field of constants (till there are
enough points for interpolation) and the nested rule for multiplication in the composition
extension of fields. This is expressed by a trivial "multiplication rules":

where k C C C K. The rules (5.9) are the basis of all previously known and currently used
fast convolution algorithms (including Nussbaumer's and Schonhage- Strassen technique).

We found a novel way of interpolation by means of representing the set of points
where one interpolates as a divisor on an algebraic curve. To represent this interpolation
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in a more abstract way one has to use the standard language of places from the theory of
algebraic functions of one variable. See (45-461.

By a place of a field K we understand an isomorphism K -- E U {oo}, where E
is a field and 0(a) = oo, 0(b) #4 0, o for a, b E K. There is an obvious correspondence
between places and valuations (which we will use). All places on an algebraic function are
extensions of places from corresponding rational function field, and places of a rational
function field K = k(x) over a field d correspond either to (i) irreducible polynomials p(z)
in k[x], or to (ii) x - '. We deal only with algebraic function fields in one variable. Any
such field K over the field of constants k can be represented in the form K = k(z, y),
where x is (any) transcendental element of K over k, and 1,..., 1d- I is the basis of K over
k(x), [K :k(z)] = d. For an arbitrary place P of K let kp be a field such that P is an
isomorphism onto kp U {oo}. We denote by vp the normed valuation with values in Z,
corresponding to P. The degree fp of kp over k is called the degree of P. A divisor of K
is an element of the free Abelian group generated by the set of places of K. The places
themselves are called prime divisors. We write divisors additively: A = Epvp (A) .P, where

Vp (A) are integers among which only finitely many are nonzero. A divisor A is called an
integral one if vp(A) > 0 for every P. A divisor A divides B, if 0 - A is integral. The
degree d(A) of a divisor A is an integer d(A) = Epfpvp(A). With every element X E K
one associates a principal division (X) = Epvp(z) . P.

The most important object is the vector space L(-A) over k consisting of all functions
X E K such that the divisor (X) + .4 is positive. If g denotes the genus of K, then the
dimension of L(-A) over k is determined by the Riemann-Roch theorem. To formulate it,
we denote by C an equivalence class of divisors in K (modulo the principal ones- (X) for

X E K), and by N(C) the dimension of C, i.e. the maximal number of linearly independent
integral divisors in this class. Then N(C) is equal to dimL(-.4) for any A from C. The

Riemann-Roch theorem states that

N(C) = d(C) - g + I + i(C), (5.10)

where i(C) = 0 is the index of speciality of C, i(C) = N(W - C), where W is the class of
all differentials on K (canonical class). In particular, N(C) = d(C) - g + 1 if d(C) > 2g- 2
ord(C) =2g-2 and C 54W.

In applications. k is often a finite field of characteristic p > 0 with q = pm elements. If
P is any prime divisor of K-an algebraic function field with the field of constants k-then
the number of elements in the residue field kp is called the norm of P and is denoted

as: N(P) = qd(P). This definition is extended to all divisors: N(A) = qd"A) With an

algebraic function field K/k one can associate a - function:

f(K;s) = Z(N(A))-, > 1
A

where A runs over all integral divisors of K/k.
The interpolation technique on a curve corresponding to K/k proceeds as follows. To

represent a finite extension kp of k of degree d(P) one looks for a positive divisor B such
that the natural mapping

P : L(-B) -kp
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is onto. This way we find a basis of/kp over k among element of L(-B). E.g. if K = k(t) is a
rational function field, and P corresponds to p(t), one takes B = (n-1) .oo for n = deg p(t),
i.e. looks for a power basis 0, 1,... ,t' - I of an algebraic extension kP = k[t]/p(t)) of k.

The multiplication law in the field kp over k can be then represented in terms of the
multiplication rule L(-B) x L(-B) -* L(-2. B). It remains now to reconstruct functions
from L(-28) by interpolation. For this one could take a set P of divisors of the first degree
(places of the first degree) such that card(D) > 2d(B).

This general method is summarized in the following statements from [45-461 where for

an arbitrary integral (positive) divisor A on K, we put kA = K/A te=f KmodA.

CorollaryS.3: Let K be a function field over k of genus g > 0 and let A be a
prime divisor of degree n > 1 on K. Let Bo be a nonspecial integral divisor on K,
i.e. dimk L(-Bo) = d(Bo) - g + 1, such that B = BO + A is a nonspecial divisor too. Let
there be D prime divisors of first degree on K for D > 2d(B). Then there exists a bihnear
algorithm over k that computes the multiplication in the field extension kA of k of degree
n of multiplicative complexity at most 2d(B) - g + 1 = 2n + 2d(Bo) - g + 1.

Let A4 be an arbitrary prime divisor on K of degree n, and kA be its residue class
field which is an extension of k of degree n. Let us denote by #K(k) the number of first
degree divisors on K over k. It follows from Corollary 5.3 that whenever there exists a
nonspecial divisor BO on K of degree m such that m + n > 2g - 1 and #K(k) > 2m + 2n,
the multiplicative complexity, bk(kA), of computation of multiplication in kA over k, does
not exceed 2m + 2n - g + 1.
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6. Diophantine Geometry with Applications to

Low Complexity Algorithms.

As results of §5 show, to construct low complexity algorithm of multiplication in k-
algebras, associated with function rings, one needs a supply of points (prime divisors of
the first degree). Thus the main problem becomes the existence of a large number of
(appropriate) rational points on curves of high genus- a classical diophantine problem.

First of all we need the existence of some auxiliary divisors for Corollary 5.3. For
this we use the properties of the i-function Z(u) = (K;s), u = q8. Let us denote by
Nprime, the number of prime divisors on K/k of degree n. It follows that d/du log Z(u)

Enl- u {Edi Nprimed" d}. We obtain:

2g

q n + 1-Ew - Nprimed" d
i=L din

for any n > 1. Since I wi= Vq for all i = 1,... ,2g, we deduce:
a) for every n > c1 • log(g) / log q there is a prime divisor of degree n on K;
b) for every m _ g + c2 log(g q) there exists a nonspecial positive divisor of degree m

on K.
In order to have low multiplicative complexity algorithms arising from algebraic curves

one sees that the remaining problem is the construction of algebraic curves over a fixed
field k = Fq having the maximal number of divisors of the first degree for a given genus g,
as g -. oo.

The most general bound on the number #K(k) of points on K over k (prime divisors
of first degree) is given by Weil's bound: I N,;(K) - q - 11:< 2g1 / . As g -+ oo, the upper
bound in the Weil theorem is unattainable. In fact, relatively simple considerations (cf.
[471) show that

lim Nk(K) < 0- 1. (6.1)

On the other hand, there are positive results [47-481:

Proposition6.1 : Whenever q is square, the equality in (6.1) is attainable.
For example, on every classical modular curve of level m and genus g, (mp) = 1,

there are at least (p - 1)(g - 1) points over Fp2.
Choosing curves over finite fields with many points on them (Fermat curves, con-

gruence curves) we obtain a variety of new low multiplicative complexity algorithms of
polynomial multiplication.

Theorem6.2: Let q be a square > 25. Then the multiplicative complexity 6r,(Fqs,)
of multiplication in the field FqA over Fq can be bounded as follows:

6F,(Fq.) _< n. 2. (1 + 1 _ 3) + o(n)
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as n - oo.

For q = 2 we have the following upper and lower linear bounds on multiplicative
complexities (see §4 and the multiplication rule (5.10)):

3.52. n < bF,(F2-) _ 6n (6.2)

for a large n.
For F 2 and moderate n and m (below 100) the best algorithm of polynomial multi-

plication over F 2 has multiplicative complexity of linear character with a constant around
4.

All algorithms of Theorem 6.2 and (6.2) are constructive (one can construct appro-
priate algebraic curve codes in polynomial time).

The relationship with the linear coding theory, indicated in §5, extends further. Ac-
cording to §5, with every multiplication algorithm one can associate an appropriate code,
and low minimal complexity algorithms give rise to very good codes. Our algorithms (The-
orem 6.2 and others [45-46]) lead to Goppa-like linear codes arising from algebraic curves
over finite fields [48].

New algorithms for polynomial multiplication (convolution) over finite fields are to be
extended to algorithms over Z[1/2] or Z to be particularly useful in applications to bignum
computations. Here we encounter a variety of diophantine problems connected with the
number of solutions of classical diophantine equations, see [49-50].

Apparently, one of the conditions that guarantees the existence of fast polynomial
multiplications over Z, is the existence of algebraic number fields K, [K : Q) = n with a
(large) number M of "exceptional units". We say that em,..., 6 are "exceptional units"
in K if el = 1 and ci - e " is a unit in K for i 4 j. This concept first appears in works of
Minkowski and Hurwitz. Recently it was studied by Lenstra. In particular, Lenstra had
shown that the following explicit bound

n>4! 4nn( r K 2

(where DK is the discriminate of K and a is the number of complex archimedean primes)
on the number M of exceptional units implies the Euclidianity of K with respect to the
norm of K.

Obvious bound on M for an arbitrary field K of degree N is:

2< M< 2,.

On the other hand, by looking at subfields of cyclotomic fields and subfields of Abelian
extensions of quadratic imaginary fields, one can construct infinite families of fields K of
degree n such that

Af = o(n(log log n)2 )

for the number M of exceptional units in K.

Another similar object, also connected with Euclidianity, is useful in the construction

of fast polynomial multiplication algorithms over ring of constants Z[1/2]. In this case,
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one considers a sequence of elements bi : i = 1,... , M in K such that 6b - bj are (nonzero)
divisors of powers of 2. Such sequences and corresponding polynomials were introduced
by H. Cohn [51] as "dyadotropic".

Another interesting arithmetic problem arising from the construction of fast algo-
rithms is the existence of long sequences of "relatively prime over Z" polynomials. In this
problem, one is looking at a sequence (Q,(x) : a E A) of polynomials from Z[xi (with, say,
leading coefficient 1) such that for a 0 0,

res(Q ,Q) = 1

(i.e BQ, + CQ = 1 for B, C E Z[x]). One can understand these sequences better by
looking at reductions modp (particularly for p = 2) and comparing lists of irreducible
polynomials over Fp[x]. Ideal sequences should be long with low degrees of Q,. As with

Euclidian fields, the best source of construction of such sequences is by means of division
polynomials, particularly for elliptic curves with complex multiplication. The correspond-
ing elliptic divisibility polynomials for an elliptic curve E/Q with complex multiplication
in an imaginary quadratic field L (with the class number, say, one) are given by:

-iM OMuNorm(A)

where u E 0 (0 is an order in L), and 6(u) is a normalized a - function (corresponding
to the lattice A = flO in C:

6(u) =

s2 (A) =i w- 2 1wr 2m.
wEA,'W0

For moderate sizes of A, we had constructed sequences of relatively prime polynomials
over Z explicitly.

Our new algorithms of polynomial multiplication over Z for small n (n < 100) are

matching in minimal complexity algorithms over F 2 . For arbitrary n, we can improve
known upper bound of the minimal complexity, pz(n,n) of multiplication of polynomials
of degree n - 1 with the ring Z of constants by a factor log 2 log log n.

Development of entirely new classes of minimal complexity algorithms is closely con-
nected with the study of arithmetic surfaces (a la Arakelov-Faltings). The development

of our interpolation methods on algebraic manifolds strongly suggests a conjecture, that

all polynomial multiplication algorithms are reducible to combinations of valuation al-
gorithms. These valuation algorithms correspond to archimedean and nonarchimedean

valuations on appropriate algebraic surfaces. Classical algorithms (including high-school

method, ordinary interpolation algorithms, residue number systems, FFT and number-
theoretic FFT) all correspond to projective spaces kP". An open problem on whether

JAz~nn) = 0(n) is equivalent in this context to special properties of L-functions of

Abelian varieties at a = 1.
Let us look now at the total algebraic complexity of polynomial multiplication al-

gorithms. First of all, there are yet no satisfactory definitions of total (multiplicative,
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additive, scalar, etc.) complexity, corresponding to the true hardware organization. Inter-
esting definitions and results belong to V. Pan. In line with his definitions, we can give
some lower end bounds on the total algebraic complexities of polynomial multiplication.
For this we consider an arbitrary (commutative) scheme having (i) A nonscalar (essential)
multiplications; (ii) a chain additions, and (iii) a scalar multiplications. We have to assign
a weight to each scalar multiplication. If c is a scalar which is an algebraic number, its
size M(c) (or height) is usually determined as

M(c) = ]1 max(l, Idlcyj),

where v runs through all valuations of the smallest field K containing c. E.g. for a rational
c = p/q $ 0 with (p, q) = 1, M(c) = maz(lpI, Iqj).

It is not unreasonable to attach to the scalar multiplication by c a weight log M(c)
(this is iin understatement of a hardware performance).

The total "cost" of the computational scheme can be represented as

C = + C + Y logM(c),
C

were t and a are the numbers of multiplication and addition chains, and c runs through
all scalar multiplication chains.

A lower bound on C defined this way in the problem of multiplication of two polyno-
mials of degree n - 1 is non-linear in n:

C > n log 2 n.

On the other hand, in our new low multiplicative complexity algorithm presented here,
the "total cost" C is always

C = 0(n log n),

which makes these algorithms as attractive in applications as any of Fast Fourier methods.
To decrease the additive complexity (and cost of scalar multiplications) one has to ex-

amine the choice of evaluations or interpolation points (choices of valuations, archimedian
and nonarchimedian). These choices are determined by the hardware realization, were
the binary structure of numbers plays a crucial role, e.g. multiplications by powers of 2
amount to simple shifts. This problem appeared initially in polynomial interpolation and
is described in (52], see also [53j . Explicitly we can ask of the cost of evaluation of n-th
degree polynomial at n + 1 points, {z,} (over an appropriate ring of scalars, typically a
field). Following [52], evaluation of a set of points z, is called "fast", if it can be accom-
plished in O(nlogn) operations. The FFT algorithms provide with sets of points, where
fast evaluation can be accomplished. These points are roots of unity of a given order,
which is highly composite, typically a power of 2. In any ring, were such roots of unity
exist (and the order of roots can be inverted), fast evaluation is possible. It is this fast
evaluation by means of FFT that gives rise to fast convolution and then fast interpolation
algorithms based on fast convolutions.
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We developed recently a variety of new fast algorithms of rational function interpo-
lation and evaluation the are not constrained by restrictions of (number-theoretic) FFT
relating the word size and the length of the transformation.

To describe our algorithms we look now at a general rational function interpolation
problem. In the partial fraction representation of rational functions one looks at the
rational function with poles only at given (distinct) points: a,..., a,,. The general form
of such a rational function is

(6.) R(z) = Xi

Thus its divisor is (-'- ai + oo). The evaluation problem for this function (or its
divisor), consists of simultaneous determination of n values of R(z) at z = ,. (distinct
from a,):

(6.4) y/j =R(z)l.=#, ' a.

One can consider the transformation from, 7% in (6.3) to y' in (6.4) as a discrete (rational)

transform determined by two divisors or A = (E" -o a)) and B = (Z= 3 ). It is easy
to see that the inverse to this transformation is the following explicit one:

(6.5) __ n-S(i AY
D _

= 1,...,n. Here, PA(z), PB(z) are polynomials of degree n having as roots {a,}, and
{,i}, respectively.

Into the scheme (6.3-5) fall discretizations of important one- and multi-dimensional
integral transform (with a variety of quadrature approximations methods). Among singu-
lar integral transformations that can be described by direct and inverse schemes (6.4-5)
the most obvious is the Hilbert transform on a circle, its proper discretization, and com-
putations via FFTs are described in detail in [55]. A finite Hilbert transform corresponds
in the scheme (6.4-5) to ai being N-th roots of 1, and Pi. being N-th roots of -1.

We present now several classes of fast rational evaluation algorithms with computp-
tional cost O(n log n), that generalize finite Hilbert transforms. These new transformations

correspond to a variety of singular integrals taken over one-dimensional complex continuum
and to singular integrals over fractal sets, and to singular integrals with elliptic function
kernels. The latter transformations have interesting number theoretic and modular inter-

pretation and we refer to them as Fast Elliptic Number Theoretic Transforms (FENTT).

To describe all transformations of this class that can be evaluated in O(n log n) oper-

ations, we look at a, and #j given as roots of polynomials PA (z) and Pa (z), respectively,

where polynomials PA and Ps correspond to iteration of (fixed) polynomials and rational

functions. Thus we start with a sequence of degrees (radices) D1 , ..., Dm and with rational
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functions (polynomials) Rj(z),..., R,(z) of degrees DI,..., D,n, respectively. The polyno-
mials PA and P5 have degrees n = Di...Dn and have roots as preimages of two distinct
points a and 3 under iterated mappings

Z+I= R,(z1 ).

Thus PA(z) is defined as (the numerator of) Rm(R,.,_.(...(R1(z))...)) = a, and Ps(z)
as (the numerator of) R(R,, _.(...(R 1 (z))...)) = 3.

The most interesting case is that of D, = ... = D, = D and R ... =R, = R being
a fixed rational function of degree D. The fast algorithm to compute (6.4-5) is similar in
the flow diagram to the mixed radix FFT schemes.

The mixed radix FFT algorithm is a special case with Ri(z) = ZD i - 1, ... m. The
total computational cost of such mixed degree algorithm depends on the computational
cost of multiplication of polynomials of degrees O(D). In case of Di = O(D), and of large
m, the total computational cost of evaluation of (6.4-5) is 0(mD,...Dm.).

Among rational transforms that fit into this scheme we can mention: a) Hilbert-
like transforms for various Julia sets corresponding to polynomial or rational mappings
z -) R(z); b) singular integral transformations with elliptic function kernels. In the case
a), contours of integration can have arbitrary fractional dimension. In the case b), a
continuous analog of the transformation (6.5) is the following

Y(S) = j X(t)p(t - a)dt

for the Weierstrass elliptic function p(u). The latter transform and its discrete versions
are particularly well-suited for arithmetic interpretations. If an elliptic curve E is defined
over a finite field k = Fp (e.g. is a reduction mod p of an elliptic curve over Q), then the
set of its k-rational points is an Abelian group of order Np = p - ap + 1 for IapI : 2/p.
Moreover, for any integral a, jal < 2V , there is an elliptic curve over Fp with Np = p-a+1.
Whenever 2'1 divides N, one has points of order 2' on an elliptic curve, all defined
over F,. Consequently, the fast evaluation algorithm can be applied in this case with
D= = ... = D,, = 4. The rational function R(z) in this case is the duplication formula for
x-coordinate in the Weierstrass cubic form of an elliptic curve E: y,2 = 4z 3 - g2X - 93:

R(z) = -2x + (6X2 -92/2)
2

4y 2

The choice of a and 0 should be of x-coordinates of second order points on E. When-
ever prime p is such that p is within distance 21,p from a power of 2 (or from a highly
composite number) one has a very fast algorithm of rational evaluation and transformation
of length 0(p)modp.

The same method can be used for a composite number of M if one chooses an appro-
priate elliptic curve over Z/MZ, whose reduction mod p for prime factors p of M have
highly composite Abelian group of Fp-rational points. Using the standard facts of the dis-
tribution of highly composite numbers, see [561, we conclude that vith any number M we
have FENTT of length O(M) over Z/MZ with computational cost O(M log M). FENTT
algorithms are particularly attractive in parallel implementation.
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7. Evaluation of Solutions of

Linear Differential Equations.

Recently we have developed new fast algorithms of power series computations for im-
portant classes of algebraic functions and solutions of linear differential equations with
rational function or algebraic coefficients, [32], [36], [27]. These algorithms provide also
with efficient methods of evaluation and of analytic continuation of solutions of these equa-
tions. Our algorithms are all based on the analysis of (linear) recurrences on coefficients
of power series expansions.

We differentiate between the operational and the total (boolean) complexity. By
operational complexity of an algorithm one understands the number of primitive operations
(most notably additions and multiplications), independent of the sizes of numbers involved,
needed to complete this algorithm. By the total (or boolean) complexity we understand
the total number of primitive operations (on short or single-bit data) needed to complete
a given program. The main distinction between the conversion from the operational to
the total complexity, depending on the size of numbers involved, is described by the total
complexity of multiplication of big numbers.

Let us denote by M(n) the total complexity of multiplication of two n-bit integers.
Then the best known upper bound on M(n) belongs to Schonhage-Strassen [57]:

M(n) = 0(n log n log log n).

In comparison, a total complexity of addition is relatively simple: it is only 0(n).
All algebraic operations on bigfloats have boolean complexity of the same order of

magnitude as a multiplication. For example, if B(n) denotes one of the following total
complexities: division of n-bit bigfloat numbers, square root extraction, or raising to the
fixed (rational) power, then B(n) = O(M(n)), and M(n) = O(B(n)).

Our methods based on fast computation of solutions of matrix linear recurrences
allow us to construct new algorithms of low total complexity for evaluation of solutions
of linear differential equations with an arbitrary precision. Such algorithms of low total
complexity were till now unknown for general special functions. Low complexity algorithms
were known only for algebraic function computations (standard Newton method), and for
elementary functions.

We describe now our new algorithms [27, 36] of low total complexity for computation
of values of solutions of arbitrary differential equations, neither related to any rapidly con-
vergent analytic transformations, nor to any low operational complexity methods. These
methods differ in boolean complexity at worst by factor log 2n or logn3 n from the boolean
complexity M(n) of algebraic computations.

Let us look at an arbitrary linear differential equation with rational (polynomial)
coefficients, either in the scalar form

anY( n ) + an-ty(n - 1) + "'" + aty' + aoy = 0, (7.1)
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or, in the general matrix form,

= A(x). Y(x), (7.2)

where a1 E C(x), and A(x) E M,,(C(x)). We are interested in the evaluation of solutions
of (7.1) and (7.2) with arbitrary precision using the method of (formal) power series ex-
pansions of [361. Having specified initial conditions for y(x) or Y(x) at x = xo, we want to
evaluate within a given precision I y(x) or Y(x) at another point x = xj. For all practical
purposes we assume that values of z 0 and x, are given correctly with the precision of I
bits, or as rational or algebraic numbers of sizes less than I. To determine values at x = x,
from those at x = xO one has to specify a path - from xO to x, on the Riemann surface
(or its universal covering) of y(x) or Y(x), see [27].

The global recipes [27, 36] for the analytic continuation of Y(x) along -y are combined
with better local methods of evaluation of Y(x) from x = xo to z = x. For this we are
using local power series of Y(x) to continue Y(x) from x = xo to x = x, making several
steps between xO and xj, releasing consecutive blocks of x, in bursts. We call this method
"bit-burst" method. This way we arrive at the following general theorem that gives an
upper bound on the total (boolean) complexity:

Theorem 7.1. Let (7.2) be a given linear differential equation with rational function
coefficients, and Y(x) be its arbitrary (regular) solution with initial conditions at x = xi,
where xz, is an K-bit number. Given a path -y from xn to an K-bit number Xyf,, (on the
Riemann surface of Y(x)) of length L, one can evaluate Y(x)1 .=x,,, at x = xfj, with the
full K-bit precision at most

O(M(K) (log 3 K + log L))

bit operations.
The bit-burst method in the general form of Theorem 7.1 is not the best possible:

one would like to see log 3 K replaced by log K always. Sometimes the complexity can be
lowered:

I. If in and xfi, are fixed rational numbers, then the computation of Y(x) with the
full K bits of precision has total (bit) complexity at most O(M(K)(log2 K + log L)).

II. If the differential equation (7.1) or (7.2) possesses special arithmetic properties,
bit-complexity can be lowered. E.g. if the (7.1)-(7.2) possesses a solution which is either
an E-function or a G-function, then the general bit bound of Theorem 7.1 can be lowered
to

O(M(K) . (log 2 K + logL)).

If, further, like in xZn and Xz,, are fixed rational numbers, and Y(x) is built from E- or
G-functions, then K significant digits of Y(xo) can be computed in

O(Af(K) . (log K + log L))

bit operations.
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This last bound is unsurpassed by any other algorithms even for elementary functions,
like the exponent, where low operational complexity algorithms are well known, see [58].

Our original interest in the development of power series evaluation facilities was purely
transcendental. We wanted to have the ability to compite the monodromy group of linear
differential equations with an arbitrary precision to check various hypotheses of tran-
scendence, algebraicity and the existence of algebraic relations among elements of the
monodromy matrices. The "constants" appearing as elements of monodromy matrices en-
compass classical constants of geometry and analysis. Among them there are periods of
algebraic varieties including values of the Euler r- and B-functions (at rational points) and
other integrals of elementary and algebraic functions over closed paths.

To compute the monodromy group of linear differential equations we use the power se-
ries method based on the direct analytic continuation of a fundamental system of solutions.
In this method one starts with a fundamental system of solutions

of (7.1) [given by their initial conditions] and analytically continues it along a closed path
with no singularities on it. The system Y analytically continued along a path -Y undergoes
a linear transformation

The set of all matrices M('y) is a monodromy group of (7.1).
Areas of applications include:
1) multiple precision computation of Abelian integrals and their periods. These com-

putations are used then in the transcendental solution of the problem of reduction of
Abelian integrals. In order to determine the reducibility of Abelian integrals to the lower
genra (e.g. when an Abelian integral is an elementary function) one looks at the Z-relations
between periods.

2) Another application of monodromy computations is to the solution of the direct
and inverse Galois problem, when one wants to find a Galois group of a given algebraic
function field (differential equation) or wants to construct a field with a given Galois
group. Our package is designed mainly for the direct Galois problem, but we found it
extremely convenient to use for solution of the inverse Galois problem when the number of
parameters is not large and one can numerically invert the function (monodromy matrix
output) generated by our program.

3) Uniformization theory seems to be an attractive proving ground for application of
monodromy packages. For us the crucial problem was the question of arithmetic nature
of parameters in the solution to the uniformization problem, including: a) algebraic equa-
tions (i.e. their coefficients) defining Riemann surfaces to be uniformized; b) invariants of
discrete groups that uniformize these Riemann surfaces (Fricke parameters and more so-
phisticated parametrizations of Teichm6ller spaces); and finally, the most notorious group
of parameters c) assessory parameter that uniquely determine the differential equation of
the second order, ratio of solutions of which determines the inverse to the uniformizing
function.
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Interesting applications of our numerical studies of uniformization theory include mas-
sive computations of accessory parameters (and corresponding Fuchsian groups) for hyper-
elliptic surfaces. One of the results of the computations [32] was the Yegative solution to the
Whittaker conjecture (1928), which predicted the explicit expression of accessory parame-

ters for hyperelliptic surfaces of genus g 2, by looking at their birational transformations.

The true structure of Teichmuller spaces, as revealed by our numerical computations is

quite complex [27], [32].
4) Another group of applications of explicit solutions of accessory parameter prob-

lem involves explicit determination of conformal mappings of complicated domains using
appropriate linear differential equations. This gives a high-precision method that can be
used in adaptive grid computations.

Complexities of power series computations can be also investigated from the point
of view of parallel (vector) implementation. The parallel (vector) methods are important
because they seem to be the only way to address large jobs. Algorithms that compute power

series coefficients and values of functions by means of linear recurrences are particularly
well-suited for various vector and parallel implementations.

The methods that we propose, bit-burst algorithms for computations of arbitrary

linear differential equations, have always depth O(log n log log n) even though, in general,
the total bit operation count is O(M(n) • log 3 n). In fact, for E- and G-functions the total
bit operation count with the same depth is only O(M(n) • log 2 n).
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8. Polynomial Root Finding

One calls a (univariant) polynomial sparse, if it has a number of nonzero coefficients
significantly less than its degree.

Sparse polynomials, particularly trinomials and quadrinomials, are extremely inter-
esting from many points of view. Let us mention now just one problem: which Galois
groups G can be realized as Galois groups of trinomials az + bxm + c = 0 (for a, b, c E Z
or for a,b,c E Z[xI)?

The generic Galois group of a trinomial of degree n is S,, so roots of a trinomial
cannot be determined in closed form for n > 5. Nevertheless one can express the roots of
trinomials in a closed form as infinite series with binomial coefficients. Such an expression
can be found in Ramanujan's writing.

Ramanujan normalizes the trinomial equation in the following form

aqz P + z q = 1, a> Oand0 < q <p.

For n > 0 and a particular root of a trinomial aqz P + X q = 1, Ramanujan [R1,Ch.3 of
his Second NotebookI proves the expansion:

n n 00r (n+DN)
X - . E (qaj.V ___(.1q = N!r (n+pN -N +1)'(.1

This expansion converges when Jal _ p-P/a. (p -q)
This expansion of Ramanujan is usually attributed to Lambert (1758). The usual

derivation of this formula is based on Lagrange inversion theorem (1770). References to
this and other similar Ramanujan's formulas can be found in Brendt, Evans, Wilson, [591.

"Ramanujan's" formula can be also derived directly from the trinomial equation using
the transformation of contour integrals into Barn's type integrals of r-functions. This
derivation had been achieved by Hj. Mellin [601, and generalized by him to arbitrary
algebraic equations.

These integral representations are particularly convenient for sparse polynomials,
where they also can be converted into multivariate power series expansions.

Let us look at an arbitrary k + 2-nomial

Z' + azn + a 2Xn2 +... + akz - k - 1 = 0, (8.2)

n > ni > n 2 > ... > nk > 0. Then we have the following expansion of all n roots z i

of this equation, or of their M - th powers x.t

4;.x - A,., at . .aik(83)
N=..I haN

where one puts:
A.,.. ., = N'U + j "  '" k

3j . .. . n
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The series (8.3) converge always whenever

mazx(al i - 1,... ,k) < min(n/(kvn]n'l (n - nil"-"),n/(kv/[nlnk (n - nk)"-k)).

In principle, the power series formulas like Ramanujan (8.1) or Mellin's (8.3) can be
used directly for the root finding of sparse polynomials. It is inuch more practical, though
to use our methods of analytic continuation of power series solutions of linear differential
equations satisfied by algebraic functions. These differential equations can be represented
in terms of equations on multidimensional generalized hypergeometric functions. These
equations can be integrated and analytically continued everywhere. The most general
expression for a system of Fuchsian linear differential equations on x , as functions of
a,... , ak, can be deduced from the power series representation of (8.3) for Xj.

Namely, the (algebraic) functions x". for roots xi of (8.2) satisfy the following systemj
of k Fuchsian linear differential equations on a/a1a,... ,a/oak:

nf8 ' "=°(niaj'-" + "•" + nkak - + As + nm)

M= I a- + ak, , - A + = n-ni 1,...,k. (8.4)

This system (8.4) of linear differential equations can be integrated starting from a, =
a2 .... = ak = 0 with initial conditions xj = e. for n - th roots of unity c! = 1 j=
1,. . . , n. Alternatively integration can start at oo, or at any other point in k- space, where
xi are known.

The methods of analytic continuation of algebraic functions xj from ai = 0 can be
easily implemented, and its only nontrivial part concern the regular (Puiseux) power series
expansions of xz in the neighborhood of singularities of differential resolvent equations
(8.4), see r6 1]. This leads to an iterative algorithm, where to compute the roots of k + 2
-nomial one has to precompute the roots of k + 1-nomials (that give the singularities
of the former branches of algebraic functions), etc. This method is perfect for parallel
implementation, since on each level of iteration all roots are computed independently.
The storage requirements are determined only by the number of roots one wants to see.
Moreover, this iterative method was implemented in vector and array hardware, e.g. on
IBM 3090-VF or on CRAYs, because most of the operations are vectorizable loops.

The complexity bound for the computation of roots of sparse polynomials using the
analytic continuation of solutions of differential resolvents is the following.

Theorem 8.1. One can compute all n roots of a k-nomial of degree n with the
precision M (of leading digits) in 0(k21og 2M) parallel steps on n processors. If k < n,
then one can compute m(< n) roots of a k-nomial of degree n with the precision of M
(digits) in 0(klog2M) parallel steps on 0(m) processors.

The crucial osbtacle in the complex root finding for large degrees of polynomials is
the need for multiple precision computations. Unfortunately high precision requirements
make the programming of the root finding methods awkward in any vector or parallel
environment. Because of these constraints our fast polynomial root finding algorithms
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for dense polynomials involved degrees only in thousands. The largest "random" dense
polynomial we completely solved in double precision on a single processor of CRAY II had
degree 15,000.

The target of our large degree polynomial root finding programs was the analysis of the
distribution of complex roots of a real (or complex) polynomial with random coefficients.
Specifically we looked at normally distributed random coefficients, though various other
distributions were analyzed as well. The distribution of real roots of a random polynomial
of degree n (there are O(logn) of them) was described by Hardy-Littlewood-Kac. Much less
is known about the distribution of the complex roots in addition to the obvious statement
that "most of the roots are uniformly distributed around the unit circle."

We have conducted extensive computations of complex roots for large series of random
polynomials (normal, uniform, uniform {0, 1}, and other distribution of coefficients) of
degrees varying from 500 to 15,000. While degrees up to 1,000 are easy to handle on a
PCAT with an accelerator board (in our case it was DSI-020), degrees higher than 1,000
required a vector facility. We used the vector facility of IBM 3090-VF for degrees up to
7,000, and CRAY II, with time provided by the NSF Grant, for degrees 7,000-10,000 with
the maximum of 15,000. The limit on degrees is a consequence of precision constraints,
and an increase in precision significantly inhibits the vectorization and slows down the
computations. We present some of the outputs of the pictures of complex roots of random
polynomials with normal distribution of coefficients, with parts of the picture blown up
for detail.

These computations were based on our new parallel algorithms of root finding for
dense polynomials.

The crucial problem in the construction of the truly polynomial time root finding
methods is the ability to deal with possible clustering of roots.

We propose a new (probabilistic) method based on the analytic continuation of al-
gebraic functions through their singular points. This method uses in an indirect way the
homotopy method, the Euler-Newton method and the Lobachevsky method. Our method
is based on the deformation of a polynomial P(x) E Z[x] degP = n, into a bundle P(x,t)
with the initial position P(x,0) = Po(x) for a random polynomial Po(z), and with the
final position P(z, 1) = P(x). We then study the algebraic functions z = z1 (t) that are
branches of an algebraic function defined by the equation

P(z,t) = 0.

Theorem 8.2. If P(z) E Z'x! has degree n, then all n zeroes of P(z) can be found
with the precision M of leading digits (M > 1) in O(Mlog n)° (') parallel steps on n° ( 1)

processors. For a generic polynomial P(z) of degree n, all n complex zeroes of P(z) can
be found with the precision of M leading digits (M > 1) in O(iog M log n)0(1) parallel
steps on nO(i) processors.
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Abstract. Graph-theoretical and topological maximal size of a degree A with a diameter of at
properties of large interconnection networks are most D. As it has turned out, it is rather difficult
studied for the purpose of construction of mas- to construct explicitly (AD). graphs. However, not
sively parallel computers. The main goals are an unexpected result of the study [2] shows that
the determinantion of networks of a given size random (i.e. "almost all") regular graphs of de-
(number of nodes and links) having the smallest gree A > 3 have the diameter D asymptotically
transmittion delay, or having the fastest routing close to the best possible Moore's bound as D -+
of data between processors according to a given -. The phenomenon that random graphs seem to
permutation. This problem is analyzed for have quite small diameter was observed experimen-
regular graphs (having large automorphism tally by one of the authors of this paper (D) in the
groups), and especially for Cayley graphs of clas- course of construction of a simulation machine, and
sical finite groups. Tables of new, record (A1D). became the starting point of this investigatio. In
graphs (of maximal size for a given degree A fact, random graphs seem to have "good" extrernal
and diameter D) are presented for A = 4. These properties in many other interconnec".on problems.
graphs arise from groups GL2(Fu). The relative These include graphs with a large birth, graphs
merit of these models of parallel tomputers is ex. giving rise to concentrators and superconcentrators,
amined. The deterministic and randomized algo- diffusers and expanders. For a discussion of ran-
rithms of data routing according to a given per- doam graphs, their definitions and properties, see
mutation are studied for regular graphs with Bollobas book [3]. On the other hand, random
results close to the best possible. The practical regular graphs of large size are not easy to con-
realization of (AD)-graphs with A = 4 is sug- struct (see attempts in [4]), their layout and routing
ested in a form of a network of tables are irregular (this is both their advantage and

TRANSPUTERs Tm . disadvantage, depending on the circumstances),
and, most important, random graphs are not the op-

§0. Background. timal (AD)-graphs. (In fact, the diameter of a ran-
dom graph of a given degree is always larger than
that of the best (A,D)-graph of a given size.)

Historically, one of the first researchers who The search for the optimal (AD)-graphs has
singled out the topological (graph-theoretic) aspect been conducted for some time in an organized
of the construction of optimal large interconnection fashion with a table regularly updated and
networks was Elspas [1]. Since then the problem published. For one of the first tables see [5]. In
of the topological and graph- theoretic properties of the 80's better tables followed, [6], [7]. Now there
interconnection networks has attracted considerable is a regularly updated table of (A,D)-graphs
attention for its theoretical merits and in applica- published by Bermond et al. [8], and, most recently
tions to telecommunications networks and. recently, (9]. Most of the best (AD)-graphs from these
in construction of massively parallel processors tables are constructed from a few families of spe-
and VLSI. We are interested in one aspect of these cial regular layout graphs by means of various com-
studies: how to design a network so that u'ansmis- position operators. Among the building blocks of
sion delays are as small as possible, nthie each these constructions the most famous and important
node (a station or a processor) is connected to only is the de Bruijn family of graphs that were redis-
a few other nodes. In modem graph-theoreuc Lan. covered many times. We refer to [10] for historic
guage this problem is known as the (A.D).problem. descriptions of XIX.th and XX-th century dis-
where D is the diameter of the graph (the maxi- coveries. De Bruijn graphs can be described as
mal number of links used to transmit any single graphs of vertices represented as words of
message), and A is the degree of the graph (the length D > 3 in r 2 2 letters. Two words are con-
maximal number of links incident at any node). In nected if the last D - I letters of one are the same
this problem the (&,D)-graph is the one with the as the first D - I letters of another. The diameter



of this graph is D and its (maximal) degree is 2r. and other graph layouts as models for
These graphs were generalized in a number of ways TRANSPUTERTm  based and other parallel
(see, particularly, 1I, whe r the sitc of a graph machines. For example, a crucial problem is thc
can be any number). In modern computer science, routing of data between processors according to a
similar families of graphs wcrc introduccd in [12] given permutation. Our experiments showcd that
as cube-connected networks (also known as CCC: the best (A,D) graphs (looking locally like a A - I -
cube-connected cycles) in connection with the opit- tree) are not the best suited for this problem. From
mal area- time complexity VLSI designs. These this point of view the criterion of the minimality of
networks of 112] have nodes represented by pairs D with a given A is not necessarily a correct one.
(i,J), where i is mod N and J is N-bit word; two On the other hand, the regular layout of Cayley and
vertices (iJ) and (kL) are connected if and only if other similar graphs with a large automorphism
either J = L and i - k = 1 (mod N), or i = k and J group simplifies and accelerates the routing of data
and L differ only in i-th bit. These graphs have according to a fixed precomputed (precompiled)
degree 3, and their routing diagram turns out to be permutation (cf. with Benes networks or CCC). Un-
very useful for the layout of the FFT transforma- fortunately, fault-tolerant studies of these networks
tions in VLSI circuits [12]. For an arbitrary degree are scarce (in the simplest case of a few faults in de
these networks were generalized in [13]. Bruijn networks see [17]). Again we relied on corn-

We have conducted our own search for (AD)- puter simulation. It seems that random graphs and
graphs with particular attention paid to the degree A pseudorandom graphs, particularly Cayley graphs
= 4. The four links at every node corresponding to arising from modular groups, are quite tolerant of
this case have a hardware realization in a very multiple faults of links and nodes sustaining fast in-
popular series of TRANSPUTER Tm chips. These tecommunication inside the connected corn-
chips can be assembled according to any layout of ponents. One can construct large families of pseu-
graphs of degree 4, and a crucial problem of the dorandom graphs corresponding to finite groups
best network of transputers can be attacked as a with two generators. These graphs combine the
(A,D)-problem for A = 4. In our experimental fault-tolerance of random graphs with the simplicity
studies it has turned out that some of the best (AD)- of the routing diagram in a fault-free setting. Practi-
graphs have large automorphism groups ("the local cal realizations of these graphs in a parallel
view from every mode is the same"), and locally machine will be discussed elsewhere. The problem
many of these graphs resemble a 3-tree. This im- of (AD)- graphs is practically quite important not
mediately leads to two observations: a) that one only for the speed of intercommunication but also
has to consider Cayley graphs or graphs repre- in view of the enormous amount of wiring (cables)
senting the action of a finite group with two gener- needed if a wrong graph is chosen. Since the
ators; b) that factors of the free group, e.g. factors amount of links nerded to assemble N nodes into
of the modular group with respect to arithmetic a graph of degree A is proportional to N A /2,
(congruence) subgroups, should be considered. Fac- one realizes that a popular n-cube configuration (N
tors of modular group, particularly SL2(Fo) groups = 2", A = n, D = n) is far from optimal even in the
have already been analyzed in connection with dif- class of graphs with a similar routing (like CCC),
ferent extremality problems (Margulis, study of su- cf. the case of diameter D = 12 with graphs from
perconcentrators and also [14)). Interestingly Table I below.
enough, Caley graphs of SL2(Z/NZ) and graphs of
action of SL2(Z/NZ) on P (ZNZ), as well as §I. (AD)-problem and Cayley
Cayley graphs corresponding to factors of quater-
nion Fuchsian groups modulo congruence sub- graphs.
groups, do not give the best diameter for a given
size and degree (= 4). These graphs, however, For efficient parallel processing one needs
often provide graphs with the best diffusion and ex- designs of microprocessor networks that provide
pansion coefficients (15], [161. (See below a con- with an easy data routing and fast intercommunica-
jecture on the relation between the diameter and the tion.
expansion coefficient.) Rather, Cayley graphs of This is reduced to the problem of constructing
factors of the modular groups have diameters large graphs with a given degree and diameter.
similar to those of random grapht in the mid-range
of the size n of the graph (n < 10), but have a dis- Deflnion 1. Let G = (X,E) be an undirected
tinct advantage of a very regular layout and a graph with vertex set X and edge set E. The dis-
simple algorithm for generation of a routing table. tance d(xy) between two vertices x and y is the
The best (with respect to diameter) Cayley graphs length of the shortest path between x and y (the
that we found correspond to Borel subgroups of number of edges in this path). The diameter D of
GL 2(F ), These graphs are better than those G is D = max(x C  X x X d(x,y).
known'before; their routing properties are similar to The degree a vertex is the number of ver-
those of CCC. In particular, various important per- tices adjacent to it (distance = 1), and the degree A
mutations can be realized in relatively few cycles of G is the maximum degree of vertices in X.
on these graphs. We present below some of these
graphs. We investigated the relative merit of these



The extremal problem of degrees and vertex set X = G. and two vertices gl, g2 e G are
diameters consists of finding a graph with the maxi- adjacent (connected by the edge) iff g =g 2 , c for
mal number of vertices, denoted n(A,D), having c e C. If C = C, the Caylcy grapb G is un-
given degree A and diameter D. directed.

In interconnection networks vertices arc The problem of minimal diameter of Cayley
processors, the degree is the number of links inci- graphs can be reformulated as a problem of finding
dent at a processors representing a vertex, and the the generators such that each group element is writ-
diameter is the number of links necessary for broad- ten as the word of the shortest length.
casting from everybody to everybody. From the point of view of practical realization

An upper bound on n(AD) is given by Moore: of interconnection network built from
TRANSPUTERS, our primary interest lies with de-

(1) n(A,D) -(A(A-l) 2) / (A -2) (A > 3). gree A = 4, when there are 4adjacent vertices to
every one. In the case of Cayley graphs this cor-

The proof of bound (1) becomes obvious if to look responds to finite groups G with two generators A,
at (A - )-ree. B and C = (AB,A" ," ) (i.e. A = 4).

Apparently for D > 2 Moore's bound is never
achieved (and one can even decrease the right side
of (1) by 2), but it is nearly all that is known about §2. Cayley graphs of factors of
the upper bound on n(AD).

Still, one expects for a fixed A > 3, that the modular group and subgroups of
maximal size n = n(A,D) of a graph with degree A, GL 2(Fp).
diameter D is expected to satisfy

(2) D - log A n. Cayley graphs of classical series of finite
groups turned out to be good models of intercom-
munication networks. Some of the best series are

Exactly this kind of asymptotic bound (2) was given by Cayley graphs of SL 2 (F0 ).
established for random regular graphs of degree A In particular, le us look G = SL 2 (Z/pZ)
in [2]; see review in [3]. Namely, according to Bol- with C = (A,B,A ,B ), with A and B that are
lobas-de la Vega [2], for a fixed A k 3, for any e reductions (mod p) of two generators of a free sub-
> 0, the diameter D of "almost any" graph of de- group of a full modular group r(l) = SL2(Z) (e.g.
gree at every vertex is at most of a commutant subgroups). Varying A and B

we get Cayley graphs .asocig., with this G =(3) [log -I((2 + e) n log n)] + I SL(F andC = (AB,A ,B1, that have a rela-
tiv-ly Small diameter and, simultaneously, relative-

for the order n. This means that for any e > 0, ly large girth [14] (girth is the length of the shortest
the proportion of all A -regular graphs of order n nontrivial cycle).
with diameter less than (3) tends to zero as n -+ -. The factors of modular group modulo con-

It is relatively easy for orders n in the mid- gruence subgroups seem to be an effective way to
thousands to construct A -regular random graphs of generate graphs that locally look like trees (cf. with
order n with diameter within the bounds (2) or a free groups). The routing in graphs correspond-
(3). Unfortunately, no regular construction of such ing to the action of this group can be expressed in'random" graphs is known for general n, and, terms of the Mobius transformations, and after
moreover, diameters of these graphs, though reductions can be expressed in terms of the general-
asymptotically within Moore's bound, are far off ized Euclidean g.c.d. algorithm. For series of
the expected bounds. Cayley graphs associated with G = SL 2 (Fp) we

The best lower bounds on n(AD) are provided have established the following asymptotic upper
by graphs with quite a regular layout that are usual- bound on the diameter D
ly compositions of graphs of small size and have
high degree of symmetry. For some of the recent (4) D - log 1+/2 Card(G)
tables in the range A S 16and D ! 10 and
various methods of graph composition (various as p -+ -. The girth of these Cayley graphs has
products, etc.) see (6] - (9]. the lower bound of the same order of magnitude.

To find large graphs with small diameters and Though this bound is not asymptotically
to simplify the routing of data, we look at graphs equivalent to the Moore's one, we have the first
with high degree of symmetry. A natural class of regular construction of an infinite series of 4-
such graphs are Cayley graphs of finite groups that regular graphs with diameters asymptotically better
automatically possess large groups of automor- than in any other construction.
phisms. Choosing different generators of G we can

Definition 2. Let G be a group, and C = (c extend our construction to Cayley graphs of ar-D i be a set of its generators. A Cayley grap bitrary degree ? 4. Better diameters than those
given by (4) arise in Cayley graphs of Borel sub-

G = (GC) associated with G and C has as its groups of GL2 (Fp) and GL 2(Fq). This cor-



responds to subgroups of upper triangular 2 x 2 Borel subgroups of GL2 (Fo ) is quite similar to that
matrices. Classes of these Cayley graphs and other of CCC networks [12] and'requires at worst O(log
similar graphs (corresponding e.g. to the action of a n) steps to simulate the Benes network of size n.
group on a finite set) have distinct advantages in The solution to the problem of the best realization
practical implementations as models of interconnec- of an arbitrary permutation on a random graph or
tion networks. First, the diameters are relatively on a Cayley graph of SL2 (Fp) is not known to us,
small for large sizes. Most important, though, is but some optimal routing strategies for r'ayley
the simplicity of construction of routing tables. graphs of Borel subgroups are presented in Chapter
E.g. one requires as little as 0(1) memory on each 5. Because of this and because Cayley graphs of
processpr-node if to allow for processing time Borel subgroups give the best diameters in
O(log n) to computf locally the data routing. thousands-node range, we recommend these graphs
(This is instead of O(n) total storage necessary for for simulation and development. Among favontes
a general graph of size n.) On the other hand, the of two of the authors (C & C) is 15,657-node graph
reliability problem (when a link or a node fails, but with A = 4 and D = 10. One should expect,
the network continues to function) favors random though, for these A and D the existence of graphs
graphs with less rigid routing Cayley graphs of with over 100,000-nodes. They should make an in-
classical groups like SL 2 (Fn) look like random teresting massively parallel machine.
graphs and have similar reliability. In connection We conclude this chapter with a table of large
with fault- tolerance one also requires high connec- graphs of degree A = 4 with a given diameter F
tivity (A - connectivity) that we found in our In this table our best examples are Cayley graps
Cayley graphs. Another important requirement for of the Borel subgroups G of GL2 (Fp) with two
implementation of various mathematical problems generators AB (chosen according to the conjugacy
is th. existence of the Hamiltonian path, imbedding classes of G to give the minimal diameter). The
of various grids and fast realizations of particular subgroups G depend on a prime p and a
permutations common in many applied programs parameter a e Fp \ {0,1) and is defined as
(row-to-row exchange, FFT butterfly operations....
etc). Cayley graphs corresponding to F are well
suited for realizations of these requirement, though x y
the array sizes best suited for data routing are ex- G = ( ) x = am mod p) c GL 2 (Fp).
pressed in mod p arithmetic. The choice of q = 2 m
seems to be best suited for arrays of sizes propor-
tional to the powers of 2. The permutation rout-
ing, when the permutation is known in advance, for

Sizes of graphs of degree A = 4 of a given diameter D

T iameter Moore's bound Known New Cayley )
graphs (1987) graphs

D=3 51 40 36
D=4 159 95 90
D = 5 483 364 320
D=6 1,455 731 730
D=7 4,371 856 1,0811)
D=8 13,119 1,872 2 9432)
D = 9 39,363 4.352 7,439)
D= 10 118,095 13,056 15,65 7'_
D = 11 354,291 38,764"
D = 12 1,062,879 82,90 1
D = 13 3,118,643 140,607

)) Subgroups of GI,2(Z/pZ).
2 Borel subgroup U with p 47,a = 2.2) Borel subgroup G with p - 109, a = 7.
4) Borel subgroup G with p = 173, a = 2
) Borel subgroup G with p = 307, a = 220
6) Borel subgroup G withp=881,a=3.
6) Borel subgroup G with p = 901, a = 2.
SBorel subgroup G with p = 919, a = 2.

Table 1.



The construcuon of graphs with the smallest
diffusion coefficient is important in the construction

Remark One realizes that these G are re- of superconcentrators. However, the inequality (5)"
lated to de Bruijn-like networks (e.g. put a = 2). on D in terms of X1 does not provide a sharp
They can be also considered as a gcneralization of bound at all; one expects log A1 n and not log 2 n.
CCC [12-13]. We conjecture, however, that the relationship is

sharper:
Cayley graphs with G = SL(F) give less

dense sequence of graph sizes. The bt diameters Conjecture. For a A -regular graph G of size
(for special choices of A, B) are: G = SL3(F1 3 ,  n, the relationship between D and X1 is the follow-
Card(G) = 2,184, D = 8; G = SL 2(F 7), Car (G) = ing
4,896, D = 9, G = SL 2 (F2 3 ), Card(G) = 12,144, D
=10. D ! (log X,/2 n)/ 2 +o (log& - 1 n).

§3. Expansion coefficients and This relationship, if true, should be asymptoti-
diameter. cally (!) the best possible. Inded, there is always a

lower bound on X1: X1 a 2 V A- I as n -+o .
Graphs for which . < 2 '4 A - were called in

In the study of fast data routing one en- [161 Rarnanujan grahs. Examples of authors [16)
counters, in addition to (A.D)-problem, similar and (1985-86) of Ramanujan graphs included graphs
loosely related subject of expanders, diffusors and arising from quotients of quaternion Fuchsian
superconcentrators. To be precise, let us look at groups modulo congruence subgroups of level p
the graph G = (XE), and for any subset A c X we (connected with quadratic forms in four variables).
define the boundary of A as aA = {x e X : d(x,A) Unfortunately. for moderate primes (p < 10,000)

1). Expanders have the property that every A c none of these Ramanujan graphs have a small
X has a large boundary: one calls a graph G = diameter. It seems that diameters of Ramamujan
(XE) an (nA,c)-expander, if G is a A - regular graphs are worse than diameters of random regular
graph (G has degree A at every vertex) of n ver., graphs of the same size. Nevertheless, some of the
rices, and for every A c X, Card(A) :< n/2, the graphs of relataively small diameter can be
boundary aA has at least c • Card(A) elements. Ramanujan graphs. Among these graphs are
The constant c > 0 is called the expansion coeffi- Cayley graphs of SL2 (F) for a large set of p's
cient. (numerical experiments, d. [15], show, though, that

The connection between the diameter problem not for all p's and not for all generators A and B
and expanders/superconcentrators is based on the these graphs are Ramanujan ones).
spectral properties of graph. Let us denote for the In general, having a small diameter has noth-
graph G= (XE), by AG the adjacency mamtrix ing to do with having small XI, as signified by a
of G : AG = (ax,) xv X, where ax = I if xy e large number of de Brujin-like graphs having rela-
E and axv = 0 oher ise. If G is a egular graph tively small diameter and large 1. The main in-
of degrcY A, A is the largest (in absolute value) terest in XI, in addition to its importance in super-
eigenvalue of AG. We denote, as usual, by X1 = concentrators, is purely geometric. For various
Xl(G) the second largest (in the absolute value) Cayley graphs G that arise from algebraic curves
eigenvalue of AG. This eigenvalue is usually over F for q = p0 (as n - L) Xjland other non-
called the diffusion coefficient The relationship be- trivial gigenvalues of AG are closely connected to
tween expansion and diffusion coefficients is the eigenvalues of Frobenius x - xP acting on this
folowing (see [18]). A A -regular graph G of curve. In the case of algebraic curves over finite
sie n is an (nAc)-expander with (and local) fields that are uniformized by special

groups of Mobius transformations (Mumford's
c = /&1 1 A)/2, groups and uniformizaions), Ihara's theory [19] al-

lows to express the distance function on Cayley
also one always has Xl S A - c2 / (4 + 2 c2), graphs corresponding to factors of arithmetic

see (16], [18]. It seems intuitively clear that graphs groups in terms of eigenvalues of Hecke
with large expansion coefficients should have a (Frobenius) operators. This often gives "explicit"
small diameter. This had been substantated to an formulas for A.1, and make their study very interest-
extent with the following geometric result from in;. The growt of X1 (and D) in this case is deter-
[181: mined by the sizes of eigenvalues of Frobenius, Le.

For a regular graph of degree A A: h a ge n ultimately by Weil-Deligne bounds in Weil-
X1, the diameter is bounded in terms of Lhe sue of Ramanujan problems for ; -function of appropriate
the graph as follows: curves and algebraic varietes.

(5) D < 2 [42A/(A-Xl) log 2 n).



iff the vertex i + q (mod n) is joined to j + q (mod

§4. Pseudorandom and other n). If all edgcs (i, i + 1) appear in the graph (i.c,
Interesting classes of graphs. q = 1), then this graph is called the chordal ring.

For small n some of the best (A,D)-graphs
One can try to combine the bencfits of arc, in fact, chordal rings [201, [9]. It is an interest-

regularity of layout of Cayley graphs with fault- ing number- theoretic problem how to determine ex-
tolerance and good extremality properties of ran- plicitly the diameter of a generalized chordal ring
dom graphs by looking at "pseudorandom" graphs. given the divisors q of n and the lengths of
To this category of graph belong graphs generated chords. Here by the length of a chord in a general-
by several random permutations. Alternatively, one ized chordal ring one understands such an integer
can consider as a pseudorandom a Cayley graph for n that nodes i and i + n are connected for a given
an appropriate finite group G with a random i(mod n/q).
choice of generators A and B. In fact, some A word of caution: for a large n generalized
Cayley graphs for SL2(Fp) can be considered as chordal rings are not the best (AD)-graphs for a
such. fixed A.

If a graph has a Hamiltonian cycle (and we
are interested only in this class of graphs), one can §5. Data routing on regular graphs.
consider its vertices as lying on a circle of n ver-
tices with i-th vertex connected to i + 1 (mod n). In practical realizations of interconnection net-
An easy way to generate pseudorandom graphs is w nrra els of icteronetof ne
to choose a random permutation it of (l,...,n) and works as models of parallel computers, one of the
connect 7r(i) with ir(i * 1) (mod n). These graphs most important prblems is that of fast realization
can be described invariandy as those, having two of data routing, particularly that of permutation rout-
Hamiltonian paths with non-overlapping links. ing. The routing strategies are usually divided into
Choosing permutation x is various ways one can local and global, or into oblivious and nonoblivious
decrease diameter and increase girth of such pseu- [20 - 23]. A startegy is called an oblivious one,
dorandom graphs. Also, expansion coefficients when the route of any packet depends only on the
match those of Ramanujan graphs for these pseudo- origin and destination of the packet. Oblivious
random ones. This construction is very promising strategies are not quite local because the time to
for practical implementation. We performed com- send a packet along an edge can be determined by
puter experiments for data routing on these pseudo- a non- local decision. Whenever the permutation is
random graphs that showed a satisfactory perfor- known in advance, the global strategy can be ad-
mance. (For example, the routing according to a vantageous. One can try to simulate in this case a
random permutation of n nodes for n in the range Benes-type network to achieve as the global worst
of 200 - 1,000 required in average the routing times case time O(log n) for a routing on a network of n
of D + 1. This was achived with an obvious rout- nodes. This routing time can be achieved after a
ing strategy "send data along the shortest path from considerable effort on precompilation, but can be
the addresee to the addressant". As a matter of proved for many networks of classical computer
fact, this obvious strategy performs much better on science. These include d-dimensional cubes, shuf-
a random or a pseudorandom graphs than on a fle eschange, CCC - network and its variations, [21
regular layout graph with a minimal diameter. One - 241. All regular graphs described in Chapter 2
can see why this happens by looking at a local A - also belong to this category, and, in particular, on
I - tree, and sending messages from one branch t regular graphs associated with the Borel subgroups
another across the root of the tree. Combining ob- of GL 2 (F) of size n one can emulate a Benes net-
vious routing strategy for random permutations work in ne O(log n). Another clasical routing
with multi-phase oblivious strategy of Chapter 5 s is based on Batcher's Olog n) - sorting
one can arrive at an efficient randomized routing network algorithm [24]. This strategy can be imple-
strategy for an arbitrary permutation.) mented on classical networks and on regular graphsSome of the graphs with Hamilon an paths, of Chapter 2. In practical implementation of
like above, ao called chordal graphs. This name is programming on massively parallel machines the
usually reserved not for pseudorandom gTrphs, but most attention is attracted to oblivious strategies
usuallyse reered t ordal p oeuion s b ut n that are easy to implement on any switching net-
for those where the chordal connections be glrn n work. There exist two negative results concerningnodes on the circle is determined in a regular these strategies. The first of them by Borodin and

fashion as a simple number-theoretic function. A t [4 states Tha in an y oro and
preisedeiniio ca b th flloin ,se ; ,C) Hopxcroft [24] states that in any network of n nodes

of degree A the time required in the worst X, by

Definition of Generalized Chordal Rings, any oblivious routing strategy is ('n/A 3 ). We
The graph G = (XE) is a generalized chordal ng. can supplement this negative result by the following
if X=l {1...,n) mod n, and there are divisors q of Lemma. In any graph of n nodes of degree A,
n (q * n) such that vertex i is joined to vertex j any routing strategy, where the next step in the

route of the packet depends only on its present loca-
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